Limit search to available items
Book Cover
E-book
Author Geiger, William M., 1948-

Title Trace analysis of specialty and electronic gases / edited by William M. Geiger, Mark W. Raynor
Published Hoboken : Wiley, ©2013

Copies

Description 1 online resource (xxxv, 349 pages) : illustrations
Contents 880-01 Cover; Half Title page; Title page; Copyright page; Contributors; List of Figures; List of Tables; Foreword; Acknowledgments; Acronyms; Chapter 1: Introduction to Gas Analysis: Past and Future; 1.1 The Beginning; 1.2 Gas Chromatography; 1.3 Ion Chromatography; 1.4 Mass Spectrometry; 1.5 Ion Mobility Spectrometry; 1.6 Optical Spectroscopy; 1.7 Metals Analysis; 1.8 Species-Specific Analyzers; 1.9 Sensors; 1.10 The Future; References; Chapter 2: Sample Preparation and ICP-MS Analysis of Gases for Metals; 2.1 Introduction; 2.2 Extraction of Impurities Before Analysis; 2.3 Direct Analysis of ESGs
880-01/(S Machine generated contents note: 1. Introduction to Gas Analysis: Past and Future / Suhas N. Ketkar -- 1.1. Beginning -- 1.2. Gas Chromatography -- 1.3. Ion Chromatography -- 1.4. Mass Spectrometry -- 1.5. Ion Mobility Spectrometry -- 1.6. Optical Spectroscopy -- 1.7. Metals Analysis -- 1.8. Species-Specific Analyzers -- 1.8.1. Oxygen Analyzers -- 1.8.2. Paramagnetic Analyzers -- 1.8.3. Moisture Analyzers -- 1.9. Sensors -- 1.10. Future -- References -- 2. Sample Preparation and ICP--MS Analysis of Gases for Metals / Martine Carre -- 2.1. Introduction -- 2.2. Extraction of Impurities Before Analysis -- 2.2.1. Filtration Method -- 2.2.2. Hydrolysis Method -- 2.2.3. Residue Method -- 2.2.4. Choice of Sampling Method -- 2.2.5. ICP--MS Analysis -- 2.3. Direct Analysis of ESGs -- 2.3.1. Calibration -- 2.3.2. Analysis of Carbon Monoxide -- 2.4. Conclusions -- References -- 3. Novel Improvements in FTIR Analysis of Specialty Gases / Jorge E. Perez -- 3.1. Gas-Phase Analysis Using FTIR Spectroscopy -- 3.2. Gas-Phase Effects on Spectral Line Shape -- 3.2.1. External Effects on Line Shapes -- 3.2.2. Matrix Gas Effects on Line Shapes -- 3.3. Factors That Greatly Affect Quantification -- 3.3.1. Isotope Abundance Ratios -- 3.3.2. Hydrogen Bonding -- 3.3.3. Alternative Background Removal Strategies -- 3.3.4. Automatic Region Selection for CLS Methods -- 3.4. Future Applications -- References -- 4. Emerging Infrared Laser Absorption Spectroscopic Techniques for Gas Analysis / Scott McWhorter -- 4.1. Introduction -- 4.2. Laser Absorption Spectroscopic Techniques -- 4.2.1. Quantum and Interband Cascade Lasers -- 4.2.2. Cavity-Enhanced Spectroscopy: CRDS and ICOS -- 4.2.3. Conventional and Quartz-Enhanced Photoacoustic Spectroscopy -- 4.2.4. Cavity-Enhanced Direct Frequency-Comb Spectroscopy -- 4.3. Applications of Semiconductor LAS-Based Trace Gas Sensor Systems -- 4.3.1. OA--ICOS Online Measurement of Acetylene in an Industrial Hydrogenation Reactor -- 4.3.2. Multicomponent Impurity Analysis in Hydrogen Process Gas Using a Compact QEPAS Sensor -- 4.3.3. Analysis of Trace Impurities in Arsine by CE--DFCS at 1.75 to 1.95 μm -- 4.4. Conclusions and Future Trends -- References -- 5. Atmospheric Pressure Ionization Mass Spectrometry for Bulk and Electronic Gas Analysis / Glenn M. Mitchell -- 5.1. Introduction -- 5.2. APIMS Operating Principle -- 5.3. Point-to-Plane Corona Discharge Ionization -- 5.4. Factors Affecting Sensitivity in Point-to-Plane Corona Discharge APIMS -- 5.4.1. Effects of Pressure -- 5.4.2. Effects of Declustering Lens Voltage -- 5.4.3. Effects of Coexisting Analytes -- 5.4.4. Isotopic Dilution APIMS Measurements -- 5.5. Applications of Point-to-Plane Corona Discharge APIMS -- 5.5.1. Bulk Gas Analysis -- 5.5.2. Electronic Specialty Gas Analysis -- 5.6. Nickel-63 Beta Emitter APIMS -- 5.6.1. Nickel-63 Source Design -- 5.6.2. Ion Formation from a Nickel-63 Source -- 5.6.3. Importance of the Declustering Region for Nickel-63 Sources -- 5.6.4. Overcoming Competing Positive-Ion Proton Affinities -- 5.6.5. Negative-Ion Cluster Formation -- 5.7. Specialty Gas Analysis Application: Determination of Oxygenated Impurities in High-Purity Ammonia -- 5.7.1. Difficulty of Determining Water Vapor in Ammonia by Positive-Ion APIMS -- 5.7.2. Low-Level Water Vapor Measurements in Ammonia by Negative-Ion Nickel-63 APIMS -- 5.7.3. Measurement of Other Impurities in Ammonia by Negative-Ion Nickel-63 APIMS -- 5.7.4. Additional Electronegative Additives for Cluster Formation in Ammonia by Negative-Ion Nickel-63 APIMS -- 5.8. Conclusions -- References -- 6. GC/MS, GC/AED, and GC--ICP--MS Analysis of Electronic Specialty Gases / William M. Geiger -- 6.1. Introduction -- 6.2. GC/MS -- 6.2.1. Gas Chromatography -- 6.2.2. Mass Spectrometry -- 6.3. GC/AED -- 6.4. GC--ICP--MS -- 6.4.1. Basic Operation -- 6.4.2. Gas Chromatography -- 6.4.3. Interfacing -- 6.4.4. Tuning and Optimization of the ICP--MS Detector for Gas Analysis -- 6.4.5. Detector Linearity and Data Acquisition -- 6.4.6. Analytes and Matrices -- 6.4.7. Standards and Calibration -- 6.4.8. Columns -- 6.4.9. Interferences -- 6.4.10. Detection Limits -- 6.5. Conclusions -- References -- 7. Trace Water Vapor Analysis in Specialty Gases: Sensor and Spectroscopic Approaches / Jun Ye -- 7.1. Introduction -- 7.2. Primary Standards for Water Vapor Measurement -- 7.2.1. Sampling for Instrument Calibration and Gas Analysis -- 7.3. Sensor Technologies -- 7.3.1. Electrolytic Cells -- 7.3.2. Oscillating Quartz Crystal Microbalances -- 7.3.3. Chilled-Mirror Hygrometry -- 7.3.4. Capacitance-Based Sensors -- 7.4. Spectroscopic Methods -- 7.4.1. FTIR Spectroscopy -- 7.4.2. Tunable Diode Laser Absorption Spectroscopy -- 7.4.3. Cavity Ring-Down Spectroscopy -- 7.4.4. Direct Frequency-Comb Spectroscopy -- 7.5. Conclusions -- References -- 8. Gas Chromatographic Column Considerations / Leonard M. Sidisky -- 8.1. Introduction -- 8.2. Column Considerations with Packed Columns -- 8.2.1. Adsorbents -- 8.3. Primary Selection Criteria for Capillary Columns -- 8.3.1. Stationary Phase -- 8.3.2. Stationary-Phase Film Thickness -- 8.3.3. Column Internal Diameter -- 8.3.4. Column Length -- 8.3.5. Manufacturer -- 8.4. Applications -- 8.4.1. Special Cases -- 8.5. Future -- 8.6. Conclusions -- References -- 9. Gas Mixtures and Standards / Stephen Vaughan -- 9.1. Introduction -- 9.2. Definition of Gas Standards -- 9.3. Cylinders and Valves: Sizes, Types, and Material Compositions -- 9.4. Preparation Techniques for Gas Standards -- 9.4.1. Preparation of Gravimetric Standards -- 9.4.2. Gas Standards Prepared by Liquid Injection -- 9.4.3. Gas Standards Prepared by Volumetric Addition -- 9.4.4. Gas Standards Prepared by Dynamic Addition -- 9.4.5. Notes on Additive Uncertainty -- 9.5. Pressure Restrictions and Compressibility Considerations -- 9.5.1. Vapor Pressure Restrictions for Gas-Phase Mixtures -- 9.5.2. Compressibility Factor -- 9.6. Multicomponent Standards: General Considerations -- 9.6.1. Additive Vapor Pressure Restriction Effects -- 9.6.2. Material Compatibility Considerations -- 9.6.3. Additional Considerations -- 9.7. Cylinder Standard Stability Consideration -- 9.8. Liquefied Compressed Gas Standards: Preparation Differences and Uses -- 9.9. Cylinder Standard Alternatives -- 9.10. Dilution Devices and Calibration Uses -- References -- A. Cylinder and Specialized Fittings -- A.1. Cylinder Fittings -- A.2. Specialized Fittings -- B. Materials of Construction -- B.1. Tubing, Transfer Lines, and Other Hardware -- B.1.1. Valves -- B.2. FTIR Materials -- B.2.1. O-Rings/Gaskets -- B.2.2. Cells/Mirrors
2.4 ConclusionsReferences; Chapter 3: Novel Improvements in FTIR Analysis of Specialty Gases; 3.1 Gas-Phase Analysis Using FTIR Spectroscopy; 3.2 Gas-Phase Effects on Spectral Line Shape; 3.3 Factors That Greatly Affect Quantification; 3.4 Future Applications; References; Chapter 4: Emerging Infrared Laser Absorption Spectroscopic Techniques for Gas Analysis; 4.1 Introduction; 4.2 Laser Absorption Spectroscopic Techniques; 4.3 Applications of Semiconductor LAS-Based Trace Gas Sensor Systems; 4.4 Conclusions and Future Trends; References
Chapter 5: Atmospheric Pressure Ionization Mass Spectrometry for Bulk and Electronic Gas Analysis5.1 Introduction; 5.2 APIMS Operating Principle; 5.3 Point-to-Plane Corona Discharge Ionization; 5.4 Factors Affecting Sensitivity in Point-to-Plane Corona Discharge APIMS; 5.5 Applications of Point-to-Plane Corona Discharge APIMS in Bulk and Electronic Gases; 5.6 Nickel-63 Beta Emitter APIMS; 5.7 Specialty Gas Analysis Application: Determination of Oxygenated Impurities in High-Purity Ammonia; 5.8 Conclusions; References
Chapter 6: GC/MS, GC/AED, and GC-ICP-MS Analysis of Electronic Specialty Gases6.1 Introduction; 6.2 GC/MS; 6.3 GC/AED; 6.4 GC-ICP-MS; 6.5 Conclusions; References; Chapter 7: Trace Water Vapor Analysis in Specialty Gases: Sensor and Spectroscopic Approaches; 7.1 Introduction; 7.2 Primary Standards for Water Vapor Measurement; 7.3 Sensor Technologies; 7.4 Spectroscopic Methods; 7.5 Conclusions; References; Chapter 8: Gas Chromatographic Column Considerations; 8.1 Introduction; 8.2 Column Considerations with Packed Columns; 8.3 Primary Selection Criteria for Capillary Columns; 8.4 Applications
8.5 The Future8.6 Conclusions; References; Chapter 9: Gas Mixtures and Standards; 9.1 Introduction; 9.2 Definition of Gas Standards; 9.3 Cylinders and Valves: Sizes, Types, and Material Compositions; 9.4 Preparation Techniques for Gas Standards; 9.5 Pressure Restrictions and Compressibility Considerations; 9.6 Multicomponent Standards: General Considerations; 9.7 Cylinder Standard Stability Consideration; 9.8 Liquefied Compressed Gas Standards: Preparation Differences and Uses; 9.9 Cylinder Standard Alternatives; 9.10 Dilution Devices and Calibration Uses; References
Summary Explores the latest advances and applications of specialty and electronic gas analysis The semiconductor industry depends upon a broad range of instrumental techniques in order to detect and analyze impurities that may be present in specialty and electronic gases, including permanent gases, water vapor, reaction by-products, and metal species. Trace Analysis of Specialty and Electronic Gases draws together all the latest advances in analytical chemistry, providing researchers with both the theory and the operating principles of the full spectrum of instrumental technique
Notes Appendix A: Cylinder and Specialized Fittings
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Gases -- Analysis.
Trace elements -- Analysis.
Gases -- Spectra.
SCIENCE -- Chemistry -- Analytic.
Gases -- Analysis
Gases -- Spectra
Trace elements -- Analysis
Form Electronic book
Author Raynor, Mark W., 1961-
LC no. 2012050030
ISBN 9781118642771
1118642775
9781118642566
1118642562
9781299804647
1299804640