Limit search to available items
285 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Fortino, Giancarlo

Title Handbook of Human-Machine Systems
Published Newark : John Wiley & Sons, Incorporated, 2023
©2023

Copies

Description 1 online resource (531 pages)
Series IEEE Press Series on Human-Machine Systems Series
IEEE Press Series on Human-Machine Systems Series
Contents Cover -- Title Page -- Copyright -- Contents -- Editors Biography -- List of Contributors -- Preface -- Chapter 1 Introduction -- 1.1 Book Rationale -- 1.2 Chapters Overview -- Acknowledgments -- References -- Chapter 2 Brain-Computer Interfaces: Recent Advances, Challenges, and Future Directions -- 2.1 Introduction -- 2.2 Background -- 2.2.1 Active/Reactive BCIs -- 2.2.2 Passive BCIs -- 2.2.3 Hybrid BCIs -- 2.3 Recent Advances and Applications -- 2.3.1 Active/Reactive BCIs -- 2.3.2 Passive BCIs -- 2.3.3 Hybrid BCIs -- 2.4 Future Research Challenges -- 2.4.1 Current Research Issues -- 2.4.2 Future Research Directions -- 2.5 Conclusions -- References -- Chapter 3 Brain-Computer Interfaces for Affective Neurofeedback Applications -- 3.1 Introduction -- 3.2 Background -- 3.3 State-of-the-Art -- 3.3.1 Depressive Disorder -- 3.3.2 Posttraumatic Stress Disorder, PTSD -- 3.4 Future Research Challenges -- 3.4.1 Open Challenges -- 3.4.2 Future Directions -- 3.5 Conclusion -- References -- Chapter 4 Pediatric Brain-Computer Interfaces: An Unmet Need -- 4.1 Introduction -- 4.1.1 Motivation -- 4.2 Background -- 4.2.1 Components of a BCI -- 4.2.1.1 Signal Acquisition -- 4.2.1.2 Signal Processing -- 4.2.1.3 Feedback -- 4.2.1.4 Paradigms -- 4.2.2 Brain Anatomy and Physiology -- 4.2.3 Developmental Neurophysiology -- 4.2.4 Clinical Translation of BCI -- 4.2.4.1 Assistive Technology (AT) -- 4.2.4.2 Clinical Assessment -- 4.3 Current Body of Knowledge -- 4.4 Considerations for Pediatric BCI -- 4.4.1 Developmental Impact on EEG-based BCI -- 4.4.2 Hardware for Pediatric BCI -- 4.4.3 Signal Processing for Pediatric BCI -- 4.4.3.1 Feature Extraction, Selection and Classification -- 4.4.3.2 Emerging Techniques -- 4.4.4 Designing Experiments for Pediatric BCI -- 4.4.5 Meaningful Applications for Pediatric BCI -- 4.4.6 Clinical Translation of Pediatric BCI
4.5 Conclusions -- References -- Chapter 5 Brain-Computer Interface-based Predator-Prey Drone Interactions -- 5.1 Introduction -- 5.2 Related Work -- 5.3 Predator-Prey Drone Interaction -- 5.4 Conclusion and Future Challenges -- References -- Chapter 6 Levels of Cooperation in Human-Machine Systems: A Human-BCI-Robot Example -- 6.1 Introduction -- 6.2 Levels of Cooperation -- 6.3 Application to the Control of a Robot by Thought -- 6.3.1 Designing the System -- 6.3.2 Experiments and Results -- 6.4 Results from the Methodological Point of View -- 6.5 Conclusion and Perspectives -- References -- Chapter 7 Human-Machine Social Systems: Test and Validation via Military Use Cases -- 7.1 Introduction -- 7.2 Background Summary: From Tools to Teammates -- 7.2.1 Two Sides of the Equation -- 7.2.2 Moving Beyond the Cognitive Revolution -- 7.2.2.1 A Rediscovery of the Unconscious -- 7.3 Future Research Directions -- 7.3.1 Machine: Functional Designs -- 7.3.2 Human: Ground Truth -- 7.3.2.1 Physiological Computing -- 7.3.3 Context: Tying It All Together -- 7.3.3.1 Training and Team Models -- 7.4 Conclusion -- References -- Chapter 8 The Role of Multimodal Data for Modeling Communication in Artificial Social Agents -- 8.1 Introduction -- 8.2 Background -- 8.2.1 Context -- 8.2.2 Basic Definitions -- 8.3 Related Work -- 8.3.1 HHI Data -- 8.3.2 HRI Data -- 8.3.2.1 Joint Attention and Robot Turn-Taking Capabilities -- 8.3.3 Public Availability of the Data -- 8.4 Datasets and Resulting Implications -- 8.4.1 Human Communicative Signals -- 8.4.1.1 Experimental Setup -- 8.4.1.2 Data Analysis and Results -- 8.4.2 Humans Reacting to Robot Signals -- 8.4.2.1 Comparing Different Robotic Turn-Giving Signals -- 8.4.2.2 Comparing Different Transparency Mechanisms -- 8.5 Conclusions -- 8.6 Future Research Challenges -- References
Chapter 9 Modeling Interactions Happening in People-Driven Collaborative Processes -- 9.1 Introduction -- 9.2 Background -- 9.3 State-of-the-Art in Interaction Modeling Languages and Notations -- 9.3.1 Visual Languages and Notations -- 9.3.2 Comparison of Interaction Modeling Languages and Notations -- 9.4 Challenges and Future Research Directions -- References -- Chapter 10 Transparent Communications for Human-Machine Teaming -- 10.1 Introduction -- 10.2 Definitions and Frameworks -- 10.3 Implementation of Transparent Human-Machine Interfaces in Intelligent Systems -- 10.3.1 Human-Robot Interaction -- 10.3.2 Multiagent Systems and Human-Swarm Interaction -- 10.3.3 Automated/Autonomous Driving -- 10.3.4 Explainable AI-Based Systems -- 10.3.5 Guidelines and Assessment Methods -- 10.4 Future Research Directions -- References -- Chapter 11 Conversational Human-Machine Interfaces* -- 11.1 Introduction -- 11.2 Background -- 11.2.1 History of the Development of the Field -- 11.2.2 Basic Definitions -- 11.3 State-of-the-Art -- 11.3.1 Discussion of the Most Important Scientific/Technical Contributions -- 11.3.2 Comparison Table -- 11.4 Future Research Challenges -- 11.4.1 Current Research Issues -- 11.4.2 Future Research Directions Dealing with the Current Issues -- References -- Chapter 12 Interaction-Centered Design: An Enduring Strategy and Methodology for Sociotechnical Systems -- 12.1 Introduction -- 12.2 Evolution of HMS Design Strategy -- 12.2.1 A HMS Technology: Intelligent Adaptive System -- 12.2.2 Evolution of IAS Design Strategy -- 12.3 State-of-the-Art: Interaction-Centered Design -- 12.3.1 A Generic Agent-based ICD Framework -- 12.3.2 IMPACTS: An Human-Machine Teaming Trust Model -- 12.3.3 ICD Roadmap for IAS Design and Development -- 12.3.4 ICD Validation, Adoption, and Contributions -- 12.4 IAS Design Challenges and Future Work
12.4.1 Challenges of HMS Technology -- 12.4.2 Future Work in IAS Design and Validation -- References -- Chapter 13 Human-Machine Computing: Paradigm, Challenges, and Practices -- 13.1 Introduction -- 13.2 Background -- 13.2.1 History of the Development -- 13.2.2 Basic Definitions -- 13.3 State of the Art -- 13.3.1 Technical Contributions -- 13.3.2 Comparison Table -- 13.4 Future Research Challenges -- 13.4.1 Current Research Issues -- 13.4.2 Future Research Directions -- References -- Chapter 14 Companion Technology* -- 14.1 Introduction -- 14.2 Background -- 14.2.1 History -- 14.2.2 Basic Definitions -- 14.3 State-of-the-Art -- 14.3.1 Discussion of the Most Important Scientific/Technical Contributions -- 14.4 Future Research Challenges -- 14.4.1 Current Research Issues -- 14.4.2 Future Research Directions Dealing with the Current Issues -- References -- Chapter 15 A Survey on Rollator-Type Mobility Assistance Robots -- 15.1 Introduction -- 15.2 Mobility Assistance Platforms -- 15.2.1 Actuation -- 15.2.2 Kinematics -- 15.2.2.1 Locomotion Support -- 15.2.2.2 STS Support -- 15.2.3 Sensors -- 15.2.4 Human-Machine Interfaces -- 15.3 Functionalities -- 15.3.1 STS Assistance -- 15.3.2 Walking Assistance -- 15.3.2.1 Maneuverability Improvement -- 15.3.2.2 Gravity Compensation -- 15.3.2.3 Obstacle Avoidance -- 15.3.2.4 Falls Risk Prediction and Fall Prevention -- 15.3.3 Localization and Navigation -- 15.3.3.1 Map Building and Localization -- 15.3.3.2 Path Planning -- 15.3.3.3 Assisted Localization -- 15.3.3.4 Assisted Navigation -- 15.3.4 Further Functionalities -- 15.3.4.1 Reminder Systems -- 15.3.4.2 Health Monitoring -- 15.3.4.3 Communication, Information, Entertainment, and Training -- 15.4 Conclusion -- References -- Chapter 16 A Wearable Affective Robot -- 16.1 Introduction -- 16.2 Architecture Design and Characteristics
16.2.1 Architecture of a Wearable Affective Robot -- 16.2.2 Characteristics of a Wearable Affective Robot -- 16.3 Design of the Wearable, Affective Robot's Hardware -- 16.3.1 AIWAC Box Hardware Design -- 16.3.2 Hardware Design of the EEG Acquisition -- 16.3.3 AIWAC Smart Tactile Device -- 16.3.4 Prototype of the Wearable Affective Robot -- 16.4 Algorithm for the Wearable Affective Robot -- 16.4.1 Algorithm for Affective Recognition -- 16.4.2 User-Behavior Perception based on a Brain-Wearable Device -- 16.5 Life Modeling of the Wearable Affective Robot -- 16.5.1 Data Set Labeling and Processing -- 16.5.2 Multidimensional Data Integration -- 16.5.3 Modeling of Associated Scenarios -- 16.6 Challenges and Prospects -- 16.6.1 Research Challenges of the Wearable Affective Robot -- 16.6.2 Application Scenarios for the Wearable Affective Robot -- 16.7 Conclusions -- References -- Chapter 17 Visual Human-Computer Interactions for Intelligent Vehicles -- 17.1 Introduction -- 17.2 Background -- 17.3 State-of-the-Art -- 17.3.1 VHCI in Vehicles -- 17.3.1.1 Information Feedback from Intelligent Vehicles -- 17.3.1.2 Human-Guided Driving -- 17.3.2 VHCI Among Vehicles -- 17.3.3 VHCI Beyond Vehicles -- 17.4 Future Research Challenges -- 17.4.1 VHCI for Intelligent Vehicles -- 17.4.1.1 Vehicle Development -- 17.4.1.2 Vehicle Manufacture -- 17.4.1.3 Preference Recording -- 17.4.1.4 Vehicle Usage -- 17.4.2 VHCI for Intelligent Transportation Systems -- 17.4.2.1 Parallel World -- 17.4.2.2 The Framework of Intelligent Transportation Systems -- References -- Chapter 18 Intelligent Collaboration Between Humans and Robots -- 18.1 Introduction -- 18.2 Background -- 18.2.1 Context -- 18.2.2 Basic Definitions -- 18.3 Related Work -- 18.4 Validation Cases -- 18.4.1 A Simple Verification Scenario -- 18.4.2 Activity Recognition Based on Semantic Hand-Object Interaction
Notes 18.5 Conclusions
Description based on publisher supplied metadata and other sources
Form Electronic book
Author Kaber, David
Nürnberger, Andreas
Mendonça, David
ISBN 1119863643
9781119863649