Limit search to available items
Book Cover
E-book
Author Kaveh, A. (Ali), 1948-

Title Computational structural analysis and finite element methods / Ali Kaveh
Published New York : Springer, 2013
©2014
Table of Contents
1.Basic Definitions and Concepts of Structural Mechanics and Theory of Graphs1
1.1.Introduction1
1.1.1.Definitions1
1.1.2.Structural Analysis and Design4
1.2.General Concepts of Structural Analysis5
1.2.1.Main Steps of Structural Analysis5
1.2.2.Member Forces and Displacements6
1.2.3.Member Flexibility and Stiffness Matrices7
1.3.Important Structural Theorems11
1.3.1.Work and Energy11
1.3.2.Castigliano's Theorems13
1.3.3.Principle of Virtual Work13
1.3.4.Contragradient Principle16
1.3.5.Reciprocal Work Theorem17
1.4.Basic Concepts and Definitions of Graph Theory18
1.4.1.Basic Definitions19
1.4.2.Definition of a Graph19
1.4.3.Adjacency and Incidence20
1.4.4.Graph Operations20
1.4.5.Walks, Trails and Paths21
1.4.6.Cycles and Cutsets22
1.4.7.Trees, Spanning Trees and Shortest Route Trees23
1.4.8.Different Types of Graphs23
1.5.Vector Spaces Associated with a Graph25
1.5.1.Cycle Space26
1.5.2.Cutset Space26
1.5.3.Orthogonality Property26
1.5.4.Fundamental Cycle Bases27
1.5.5.Fundamental Cutset Bases27
1.6.Matrices Associated with a Graph28
1.6.1.Matrix Representation of a Graph29
1.6.2.Cycle Bases Matrices32
1.6.3.Special Patterns for Fundamental Cycle Bases33
1.6.4.Cutset Bases Matrices34
1.6.5.Special Patterns for Fundamental Cutset Bases34
1.7.Directed Graphs and Their Matrices35
 References37
2.Optimal Force Method: Analysis of Skeletal Structures39
2.1.Introduction39
2.2.Static Indeterminacy of Structures40
2.2.1.Mathematical Model of a Skeletal Structure41
2.2.2.Expansion Process for Determining the Degree of Static Indeterminacy42
2.3.Formulation of the Force Method46
2.3.1.Equilibrium Equations46
2.3.2.Member Flexibility Matrices49
2.3.3.Explicit Method for Imposing Compatibility52
2.3.4.Implicit Approach for Imposing Compatibility53
2.3.5.Structural Flexibility Matrices55
2.3.6.Computational Procedure55
2.3.7.Optimal Force Method60
2.4.Force Method for the Analysis of Frame Structures60
2.4.1.Minimal and Optimal Cycle Bases61
2.4.2.Selection of Minimal and Subminimal Cycle Bases62
2.4.3.Examples67
2.4.4.Optimal and Suboptimal Cycle Bases69
2.4.5.Examples72
2.4.6.An Improved Turn Back Method for the Formation of Cycle Bases75
2.4.7.Examples76
2.4.8.Formation of B0 and B1 Matrices78
2.5.Generalized Cycle Bases of a Graph82
2.5.1.Definitions83
2.5.2.Minimal and Optimal Generalized Cycle Bases85
2.6.Force Method for the Analysis of Pin-Jointed Planar Trusses86
2.6.1.Associate Graphs for Selection of a Suboptimal GCB86
2.6.2.Minimal GCB of a Graph89
2.6.3.Selection of a Subminimal GCB: Practical Methods89
2.7.Algebraic Force Methods of Analysis91
2.7.1.Algebraic Methods91
 References98
3.Optimal Displacement Method of Structural Analysis101
3.1.Introduction101
3.2.Formulation101
3.2.1.Coordinate Systems Transformation102
3.2.2.Element Stiffness Matrix Using Unit Displacement Method105
3.2.3.Element Stiffness Matrix Using Castigliano's Theorem109
3.2.4.The Stiffness Matrix of a Structure111
3.2.5.Stiffness Matrix of a Structure; an Algorithmic Approach116
3.3.Transformation of Stiffness Matrices118
3.3.1.Stiffness Matrix of a Bar Element118
3.3.2.Stiffness Matrix of a Beam Element120
3.4.Displacement Method of Analysis122
3.4.1.Boundary Conditions124
3.4.2.General Loading125
3.5.Stiffness Matrix of a Finite Element128
3.5.1.Stiffness Matrix of a Triangular Element129
3.6.Computational Aspects of the Matrix Displacement Method132
 References135
4.Ordering for Optimal Patterns of Structural Matrices: Graph Theory Methods137
4.1.Introduction137
4.2.Bandwidth Optimisation138
4.3.Preliminaries140
4.4.A Shortest Route Tree and Its Properties142
4.5.Nodal Ordering for Bandwidth Reduction142
4.5.1.A Good Starting Node143
4.5.2.Primary Nodal Decomposition145
4.5.3.Transversal P of an SRT146
4.5.4.Nodal Ordering146
4.5.5.Example147
4.6.Finite Element Nodal Ordering for Bandwidth Optimisation147
4.6.1.Element Clique Graph Method (ECGM)149
4.6.2.Skeleton Graph Method (SkGM)149
4.6.3.Element Star Graph Method (EStGM)150
4.6.4.Element Wheel Graph Method (EWGM)151
4.6.5.Partially Triangulated Graph Method (PTGM)152
4.6.6.Triangulated Graph Method (TGM)153
4.6.7.Natural Associate Graph Method (NAGM)153
4.6.8.Incidence Graph Method (IGM)155
4.6.9.Representative Graph Method (RGM)156
4.6.10.Computational Results157
4.6.11.Discussions158
4.7.Finite Element Nodal Ordering for Profile Optimisation160
4.7.1.Introduction160
4.7.2.Graph Nodal Numbering for Profile Reduction162
4.7.3.Nodal Ordering with Element Clique Graph (NOECG)164
4.7.4.Nodal Ordering with Skeleton Graph (NOSG)165
4.7.5.Nodal Ordering with Element Star Graph (NOESG)166
4.7.6.Nodal Ordering with Element Wheel Graph (NOEWG)166
4.7.7.Nodal Ordering with Partially Triangulated Graph (NOPTG)167
4.7.8.Nodal Ordering with Triangulated Graph (NOTG)167
4.7.9.Nodal Ordering with Natural Associate Graph (NONAG)168
4.7.10.Nodal Ordering with Incidence Graph (NOIG)168
4.7.11.Nodal Ordering with Representative Graph (NORG)168
4.7.12.Nodal Ordering with Element Clique Representative Graph (NOECRG)170
4.7.13.Computational Results170
4.7.14.Discussions170
4.8.Element Ordering for Frontwidth Reduction171
4.9.Element Ordering for Bandwidth Optimisation of Flexibility Matrices174
4.9.1.An Associate Graph174
4.9.2.Distance Number of an Element175
4.9.3.Element Ordering Algorithms175
4.10.Bandwidth Reduction for Rectangular Matrices177
4.10.1.Definitions177
4.10.2.Algorithms178
4.10.3.Examples179
4.10.4.Bandwidth Reduction of Finite Element Models181
4.11.Graph-Theoretical Interpretation of Gaussian Elimination182
 References185
5.Ordering for Optimal Patterns of Structural Matrices: Algebraic Graph Theory and Meta-heuristic Based Methods187
5.1.Introduction187
5.2.Adjacency Matrix of a Graph for Nodal Ordering187
5.2.1.Basic Concepts and Definitions187
5.2.2.A Good Starting Node190
5.2.3.Primary Nodal Decomposition190
5.2.4.Transversal P of an SRT191
5.2.5.Nodal Ordering191
5.2.6.Example192
5.3.Laplacian Matrix of a Graph for Nodal Ordering192
5.3.1.Basic Concepts and Definitions192
5.3.2.Nodal Numbering Algorithm196
5.3.3.Example196
5.4.A Hybrid Method for Ordering196
5.4.1.Development of the Method197
5.4.2.Numerical Results198
5.4.3.Discussions199
5.5.Ordering via Charged System Search Algorithm203
5.5.1.Charged System Search203
5.5.2.The CSS Algorithm for Nodal Ordering208
5.5.3.Numerical Examples211
 References213
6.Optimal Force Method for FEMs: Low Order Elements215
6.1.Introduction215
6.2.Force Method for Finite Element Models: Rectangular and Triangular Plane Stress and Plane Strain Elements215
6.2.1.Member Flexibility Matrices216
6.2.2.Graphs Associated with FEMs220
6.2.3.Pattern Corresponding to the Self Stress Systems221
6.2.4.Selection of Optimal γ-Cycles Corresponding to Type II Self Stress Systems224
6.2.5.Selection of Optimal Lists225
6.2.6.Numerical Examples227
6.3.Finite Element Analysis Force Method: Triangular and Rectangular Plate Bending Elements230
6.3.1.Graphs Associated with Finite Element Models233
6.3.2.Subgraphs Corresponding to Self-Equilibrating Systems233
6.3.3.Numerical Examples240
6.4.Force Method for Three Dimensional Finite Element Analysis244
6.4.1.Graphs Associated with Finite Element Model244
6.4.2.The Pattern Corresponding to the Self Stress Systems245
6.4.3.Relationship Between γ(S) and b1(A(S))248
6.4.4.Selection of Optimal γ-Cycles Corresponding to Type II Self Stress Systems251
6.4.5.Selection of Optimal Lists252
6.4.6.Numerical Examples254
6.5.Efficient Finite Element Analysis Using Graph-Theoretical Force Method: Brick Element257
6.5.1.Definition of the Independent Element Forces258
6.5.2.Flexibility Matrix of an Element259
6.5.3.Graphs Associated with Finite Element Model261
6.5.4.Topological Interpretation of Static Indeterminacy263
6.5.5.Models Including Internal Node270
6.5.6.Selection of an Optimal List Corresponding to Minimal Self-Equilibrating Stress Systems271
6.5.7.Numerical Examples272
 References279
7.Optimal Force Method for FEMS: Higher Order Elements281
7.1.Introduction281
7.2.Finite Element Analysis of Models Comprised of Higher Order Triangular Elements281
7.2.1.Definition of the Element Force System282
7.2.2.Flexibility Matrix of the Element282
7.2.3.Graphs Associated with Finite Element Model282
7.2.4.Topological Interpretation of Static Indeterminacies284
7.2.5.Models Including Opening287
7.2.6.Selection of an Optimal List Corresponding to Minimal Self-Equilibrating Stress Systems290
7.2.7.Numerical Examples291
7.3.Finite Element Analysis of Models Comprised of Higher Order Rectangular Elements297
7.3.1.Definition of Element Force System298
7.3.2.Flexibility Matrix of the Element300
7.3.3.Graphs Associated with Finite Element Model301
7.3.4.Topological Interpretation of Static Indeterminacies303
7.3.5.Selection of Generators for SESs of Type II and Type III307
7.3.6.Algorithm308
7.3.7.Numerical Examples309
7.4.Efficient Finite Element Analysis Using Graph-Theoretical Force Method: Hexa-Hedron Elements316
7.4.1.Independent Element Forces and Flexibility Matrix of Hexahedron Elements317
7.4.2.Graphs Associated with Finite Element Models321
7.4.3.Negative Incidence Number325
7.4.4.Pattern Corresponding to Self-Equilibrating Systems325
7.4.5.Selection of Generators for SESs of Type II and Type III331
7.4.6.Numerical Examples334
 References338
8.Decomposition for Parallel Computing: Graph Theory Methods341
8.1.Introduction341
8.2.Earlier Works on Partitioning342
8.2.1.Nested Dissection342
8.2.2.A Modified Level-Tree Separator Algorithm342
8.3.Substructuring for Parallel Analysis of Skeletal Structures343
8.3.1.Introduction343
8.3.2.Substructuring Displacement Method344
8.3.3.Methods of Substructuring346
8.3.4.Main Algorithm for Substructuring348
8.3.5.Examples348
8.3.6.Simplified Algorithm for Substructuring350
8.3.7.Greedy Type Algorithm352
8.4.Domain Decomposition for Finite Element Analysis352
8.4.1.Introduction353
8.4.2.A Graph Based Method for Subdomaining354
8.4.3.Renumbering of Decomposed Finite Element Models356
8.4.4.Computational Results of the Graph Based Method356
8.4.5.Discussions on the Graph Based Method359
8.4.6.Engineering Based Method for Subdomaining360
8.4.7.Genre Structure Algorithm361
8.4.8.Example364
8.4.9.Computational Results of the Engineering Based Method367
8.4.10.Discussions367
8.5.Substructuring: Force Method370
8.5.1.Algorithm for the Force Method Substructuring370
8.5.2.Examples373
 References376
9.Analysis of Regular Structures Using Graph Products377
9.1.Introduction377
9.2.Definitions of Different Graph Products377
9.2.1.Boolean Operation on Graphs377
9.2.2.Cartesian Product of Two Graphs378
9.2.3.Strong Cartesian Product of Two Graphs380
9.2.4.Direct Product of Two Graphs381
9.3.Analysis of Near-Regular Structures Using Force Method383
9.3.1.Formulation of the Flexibility Matrix385
9.3.2.A Simple Method for the Formation of the Matrix AT388
9.4.Analysis of Regular Structures with Excessive Members389
9.4.1.Summary of the Algorithm390
9.4.2.Investigation of a Simple Example390
9.5.Analysis of Regular Structures with Some Missing Members393
9.5.1.Investigation of an Illustrative Simple Example393
9.6.Practical Examples396
 References406
10.Simultaneous Analysis, Design and Optimization of Structures Using Force Method and Supervised Charged System Search407
10.1.Introduction407
10.2.Supervised Charged System Search Algorithm408
10.3.Analysis by Force Method and Charged System Search409
10.4.Procedure of Structural Design Using Force Method and the CSS414
10.4.1.Pre-selected Stress Ratio415
10.5.Minimum Weight420
 References432

Copies

Description 1 online resource (445 pages)
Contents From the Contents: Basic concepts of structural analysis and graph theory -- Optimal force method of structural analysis -- Optimal displacement method of structural analysis -- Ordering for optimal patterns of structural matrices: graph theory methods
Summary Graph theory gained initial prominence in science and engineering through its strong links with matrix algebra and computer science. Moreover, the structure of the mathematics is well suited to that of engineering problems in analysis and design. The methods of analysis in this book employ matrix algebra, graph theory and meta-heuristic algorithms, which are ideally suited for modern computational mechanics. Efficient methods are presented that lead to highly sparse and banded structural matrices. The main features of the book include: application of graph theory for efficient analysis; extension of the force method to finite element analysis; application of meta-heuristic algorithms to ordering and decomposition (sparse matrix technology); efficient use of symmetry and regularity in the force method; and simultaneous analysis and design of structures
Notes Online resource; title from PDF title page (ebrary, viewed January 13, 2014)
Subject Graphic statics.
Structural analysis (Engineering) -- Computer programs.
graphic statics.
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Ingénierie.
Graphic statics
Structural analysis (Engineering) -- Computer programs
Form Electronic book
ISBN 9783319029641
3319029649
3319029630
9783319029634