Limit search to available items
Book Cover
E-book
Author Latchman, Haniph A

Title Homeplug AV and IEEE 1901 : a handbook for PLC designers and users / Haniph A. Latchman, Srinivas Katar, Lawrence W. Yonge lll, Sherman Gavette
Published Hoboken, New Jersey : IEEE Press/Wiley., 2012

Copies

Description 1 online resource
Contents Machine generated contents note: 1. Introduction -- 1.1. HomePlug AV and Its Relationship to IEEE 1901 -- 1.2. Focus of the Book -- 1.3. HomePlug Powerline Alliance -- 1.3.1. HomePlug Specifications -- 1.3.2. How the HomePlug AV Specification Was Developed -- 1.3.3. Regulatory Working Group -- 1.3.3.1. United States and the FCC -- 1.3.3.2. Europe, CISPR, and CENELEC -- 1.3.3.3. Rest of the World -- 1.4. Role of PLC in Multimedia Home Networking and Smart Energy Applications -- 1.5. Book Outline -- 2. HomePlug AV Network Architecture -- 2.1. Introduction -- 2.2. Protocol Layers -- 2.3. Network Architecture -- 2.3.1. Station Roles -- 2.3.2. Bridging -- 2.3.3. Channel Access -- 2.4. Summary -- 3. Design Approach for Powerline Channels -- 3.1. Introduction -- 3.2. Channel Characteristics -- 3.3. Frequency Band -- 3.3.1. Tone Mask -- 3.3.2. Amplitude Map -- 3.4. Windowed OFDM -- 3.5. Turbo Convolutional Code -- 3.6. Channel Adaptation -- 3.6.1. Bit-Loading -- 3.7. Beacon Period Synchronized to AC Line Cycle -- 3.7.1. AC Line Cycle Synchronization for TDMA Allocations -- 3.8. TDMA with Persistent and Nonpersistent Schedules -- 3.9. Data Plane: Two-Level Framing, Segmentation, and Reassembly -- 3.10. PHY Clock Synchronization -- 3.11. Summary -- 4. Physical Layer -- 4.1. Introduction -- 4.1.1. Transceiver Block Diagram -- 4.2. PPDU -- 4.2.1. PPDU Formats -- 4.2.2. PPDU Structure -- 4.2.3. Symbol Timing -- 4.3. Preamble -- 4.4. Frame Control -- 4.5. Payload -- 4.5.1. Scrambler -- 4.5.2. Turbo Convolutional Encoder -- 4.5.2.1. Constituent Encoders -- 4.5.2.2. Termination -- 4.5.2.3. Puncturing -- 4.5.2.4. Turbo Interleaving -- 4.5.3. Channel Interleaver -- 4.5.4. ROBO Modes -- 4.5.4.1. ROBO Interleaver -- 4.5.5. Mapping and Tone Maps -- 4.5.5.1. Empty Tone Filling -- 4.5.5.2. Last Symbol Padding -- 4.5.5.3. Mapping Reference -- 4.5.5.4. Mapping for BPSK, QPSK, 8 QAM, 16 QAM, 64 QAM, 256 QAM, 1024 QAM -- 4.5.5.5. Mapping for ROBO-AV -- 4.5.6. Payload Symbols -- 4.5.7. Windowed OFDM and Symbol Shaping -- 4.6. Priority Resolution Symbol -- 4.7. Transmit Power, Tone Mask, and Amplitude Map -- 4.7.1. Relative Power Levels -- 4.7.2. Tone Mask -- 4.7.3. Amplitude Map -- 4.8. Summary -- 5. MAC Protocol Data Unit (MPDU) Format -- 5.1. Introduction -- 5.1.1. General AV Frame Control -- 5.2. Beacon -- 5.2.1. Beacon Frame Control -- 5.2.1.1. Beacon Time Stamp (BTS) -- 5.2.1.2. Beacon Transmission Offset (BTO) -- 5.2.2. Beacon Payload -- 5.2.2.1. Beacon Type -- 5.2.2.2. Addressing -- 5.2.2.3. Neighbor Network Coordination -- 5.2.2.4. Network Operation Mode -- 5.2.2.5. CCo Capability -- 5.2.2.6. Participation in Multiple Networks -- 5.2.2.7. CCo Handover -- 5.2.2.8. Beacon Management Information (BMI) -- 5.2.2.9. Beacon Payload Check Sequence (BPCS) -- 5.3. Start-of-Frame (SOF) -- 5.3.1. Start-of-Frame (SOF) Frame Control -- 5.3.1.1. Addressing-Related Fields -- 5.3.1.2. Queue-Related Fields -- 5.3.1.3. Bursting-Related Fields -- 5.3.1.4. Payload Demodulation-Related Fields -- 5.3.1.5. TDMA Allocation-Related Fields -- 5.3.1.6. SACK Retransmission-Related Fields -- 5.3.1.7. Encryption-Related Fields -- 5.3.1.8. Detection Status-Related Fields -- 5.3.1.9. Participation in Multiple Networks-Related Fields -- 5.3.1.10. Convergence Layer SAP Type (CLST) -- 5.3.2. SOF Payload -- 5.4. Selective Acknowledgment (SACK) -- 5.4.1. Addressing-Related Field -- 5.4.2. Queue-Related Field -- 5.4.3. Bursting-Related Field -- 5.4.4. TDMA Allocation-Related Fields -- 5.4.5. Detection Status-Related Field -- 5.4.6. Version-Related Fields -- 5.4.7. SACK Data -- 5.5. Request to Send (RTS)/Clear to Send (CTS) -- 5.5.1. Addressing-Related Fields -- 5.5.2. Queue-Related Fields -- 5.5.3. TDMA Allocation-Related Fields -- 5.5.4. Detection Status Fields -- 5.5.5. Immediate Grant-Related Fields -- 5.5.6. Virtual Carrier Sense (VCS)-Related Fields -- 5.5.7. RTS Flag -- 5.6. Sound -- 5.6.1. Sound Frame Control -- 5.6.1.1. Addressing -- 5.6.1.2. Queue -- 5.6.1.3. Bursting -- 5.6.1.4. Payload Demodulation -- 5.6.1.5. TDMA Allocations -- 5.6.1.6. Detection Status-Related Field -- 5.6.1.7. Sound ACK -- 5.6.1.8. Sound Complete Flag -- 5.6.1.9. Sound Reason Code -- 5.6.1.10. Max Tone Maps -- 5.6.2. Format of Sound MPDU Payload -- 5.7. Reverse Start-of-Frame (RSOF) -- 5.7.1. Reverse SOF (RSOF) Frame Control -- 5.7.1.1. Addressing-Related Field -- 5.7.1.2. Queue-Related Field -- 5.7.1.3. Bursting-Related Field -- 5.7.1.4. TDMA Allocation-Related Fields -- 5.7.1.5. Detection Status-Related Field -- 5.7.1.6. Version-Related Fields -- 5.7.1.7. Selective Acknowledgment-Related Field -- 5.7.1.8. Payload Demodulation-Related Fields -- 5.8. Summary -- 6. MAC Data Plane -- 6.1. Introduction -- 6.2. MAC Frame Generation -- 6.3. MAC Frame Streams -- 6.3.1. Priority of Management Streams -- 6.4. Segmentation -- 6.5. Long MPDU Generation -- 6.6. Reassembly -- 6.7. Buffer Management and Flow Control -- 6.7.1. Transmit Buffer Management -- 6.7.2. Receive Buffer Management -- 6.8. Communication Between Associated but Unauthenticated STAs -- 6.9. Communication Between STAs not Associated with the Same AVLN -- 6.9.1. Multinetwork Broadcast (MNBC) -- 6.10. Data Encryption -- 6.11. MPDU Bursting -- 6.12. Bidirectional Bursting -- 6.12.1. Bidirectional Bursting During CSMA -- 6.12.2. Connections and Links During Bidirectional Bursts -- 6.12.3. Encryption of RSOF Payload -- 6.13. Automatic Repeat Request (ARQ) -- 6.13.1. Request SACK Retransmission -- 6.13.2. Broadcast/Multicast and Partial Acknowledgment -- 6.14. Summary -- 7. Central Coordinator -- 7.1. Introduction -- 7.2. CCo Selection -- 7.2.1. CCo Selection for a New AVLN -- 7.2.2. Auto-Selection of CCo -- 7.2.2.1. CCo Capability -- 7.2.3. User-Appointed CCo -- 7.3. Backup CCo and CCo Failure Recovery -- 7.3.1. Backup CCo -- 7.3.2. CCo Failure Recovery -- 7.4. Transfer/Handover of CCo Functions -- 7.5. CCo Network Management Functions -- 7.5.1. Network Time Base Synchronization -- 7.5.1.1. Arrival Time Stamp for MSDU Jitter and Delay Control -- 7.5.1.2. PHY Clock Correction When Participating in More Than One Network -- 7.5.2. Discover Process -- 7.6. Summary -- 8. Channel Access -- 8.1. Introduction -- 8.2. Beacon Period and AC Line Cycle Synchronization -- 8.2.1. Line Cycle Synchronization -- 8.3. Beacon Period Structure -- 8.3.1. Beacon Period Structure in CSMA-Only Mode -- 8.3.2. Beacon Period Structure in Uncoordinated Mode -- 8.3.3. Beacon Period Structure in Coordinated Mode -- 8.4. CSMA Channel Access -- 8.4.1. Carrier Sense Mechanism -- 8.4.1.1. MAC-Level Acknowledgments -- 8.4.1.2. Setting of Virtual Carrier Sense (VCS) Timer -- 8.4.1.3. RTS/CTS -- 8.4.2. Contention Procedure -- 8.4.2.1. Priority Contention -- 8.5. TDMA Channel Access -- 8.5.1. Admission Control and Scheduling (Persistent and Nonpersistent) -- 8.6. Summary -- 9. Connections and Links -- 9.1. Introduction -- 9.2. Packet Classification -- 9.3. Connection Specification (CSPEC) -- 9.4. Connections and Links -- 9.4.1. Link Identifiers -- 9.4.1.1. Assignment of LIDs -- 9.4.2. Connection Identifiers -- 9.5. Connection Services -- 9.5.1. Connection Setup -- 9.5.2. Connection Monitoring -- 9.5.3. Connection Teardown -- 9.5.4. Connection Reconfiguration -- 9.5.5. Global Link Reconfiguration Triggered by CCo -- 9.5.5.1. Squeeze and De-Squeeze -- 9.6. Bandwidth Management by CCo -- 9.6.1. Scheduler and Bandwidth Allocation -- 9.6.2. Connection Admission Control -- 9.6.3. Beacon Period Configuration -- 9.7. Summary -- 10. Security and Network Formation -- 10.1. Introduction -- 10.2. Power-on Network Discovery Procedure -- 10.2.1. Unassociated STA Behavior -- 10.2.2. Unassociated CCo Behavior -- 10.2.3. Behavior as an STA in an AVLN -- 10.2.4. Behavior as a CCo in an AVLN -- 10.3. Forming or Joining an AVLN -- 10.3.1. AVLN Overview -- 10.3.1.1. Network Identification -- 10.3.1.2. Human-Friendly Station and AVLN Names -- 10.3.1.3. Get Full AVLN Information -- 10.3.1.4. Get Full STA Information -- 10.3.2. Association -- 10.3.2.1. TEI Assignment and Renewal -- 10.3.3. Method for Authentication -- 10.3.4. Forming a New AVLN -- 10.3.4.1. Two Unassociated STAs with Matching NIDs -- 10.3.4.2. Two Unassociated STAs Form an AVLN Using a DAK-Encrypted NMK -- 10.3.4.3. Two Unassociated STAs: One in SC-Add and One in SC-Join -- 10.3.4.4. Two Unassociated STAs: Both in SC-Join -- 10.3.5. Joining an Existing AVLN -- 10.3.5.1. Matching NIDs -- 10.3.5.2. DAK-Encrypted NMK -- 10.3.5.3. SC-Join and SC-Add -- 10.3.6. Leaving an AVLN -- 10.3.7. Removing a Station from an AVLN -- 10.4. Security Overview -- 10.4.1. Encryption Keys, Pass Phrases, Nonces, and Their Uses -- 10.4.1.1. Device Access Key (DAK) -- 10.4.1.2. Device Password (DPW) -- 10.4.1.3. Network Membership Key (NMK) -- 10.4.1.4. Network Password (NPW) -- 10.4.1.5. Network Encryption Key (NEK) -- 10.4.1.6. Temporary Encryption Key (TEK) -- 10.4.1.7. Nonces -- 10.4.2. Methods for Authorization (NMK Provisioning) -- 10.4.2.1. Security Level -- 10.4.2.2. Preloaded NMK -- 10.4.2.3. Direct Entry of the NMK -- 10.4.2.4. Distribution of NMK Using DAK -- 10.4.2.5. Distribution of NMK Using Unicast Key Exchange (UKE)
Note continued: 10.4.2.6. Distribution of NMK Using Other Key Management Protocols -- 10.4.2.7. Changing the NMK -- 10.4.3. NEK Provisioning -- 10.4.3.1. Provisioning NEK for New STA -- 10.4.3.2. Provisioning NEK for Part or All of the AVLN -- 10.4.4. Encryption Key Uses and Protocol Failures -- 10.4.5. AES Encryption Algorithm and Mode -- 10.4.5.1. PHY Block-Level Encryption -- 10.4.5.2. Payload-Level Encryption -- 10.4.6. Generation of AES Encryption Keys -- 10.4.6.1. Generation from Passwords -- 10.4.6.2. Automatic Generation of AES Keys -- 10.4.6.3. Generation of Nonces -- 10.4.7. Encrypted Payload Message -- 10.4.8. User Interface Station (UIS) -- 10.5. Summary -- 11. Additional MAC Features -- 11.1. Introduction -- 11.2. Channel Estimation -- 11.2.1. Channel Estimation Procedure -- 11.2.2. Initial Channel Estimation -- 11.2.3. Dynamic Channel Adaptation -- 11.2.4. Maintenance of Tone Maps -- 11.2.5. Tone Map Intervals -- 11.2.6. Priority of Channel Estimation Response -- 11.2.7. Channel Estimation with Respect to the AC Line Cycle -- 11.3. Bridging -- 11.3.1. Acting as an AV Bridge -- 11.3.2. Communicating Through an AV Bridge -- 11.3.2.1. Communication with a Known DA -- 11.3.2.2. Communicating with an Unknown DA -- 11.4. HomePlug 1.0.1 Coexistence -- 11.4.1. HomePlug AV Coexistence Modes -- 11.4.2. Detection and Reporting of Active HomePlug 1.0.1 -- 11.4.3. HomePlug 1.0.1/1.1 Coexistence Mode Changes -- 11.4.4. HomePlug 1.0.1-Compatible Frame Lengths -- 11.5. Proxy Networking -- 11.5.1. Identification of Hidden Stations -- 11.5.2. Association of Hidden Station -- 11.5.3. Instantiation of Proxy Network -- 11.5.4. Proxy Beacons -- 11.5.5. Provisioning the NMK to Hidden Stations -- 11.5.6. Provisioning NEK for Hidden Stations (Authenticating the HSTA) -- 11.5.7. Exchange of MMEs Through a PCo -- 11.5.8. Transitioning from Being a STA to Being an HSTA -- 11.5.9. Transitioning from Being an HSTA to Being a STA -- 11.5.10. Recovering from the Loss of a PCo -- 11.5.11. Proxy Network Shutdown -- 11.6. Summary -- 12. Neighbor Networks -- 12.1. Introduction -- 12.1.1. CSMA-Only Mode -- 12.1.2. Uncoordinated Mode -- 12.1.3. Coordinated Mode -- 12.2. Transition Between Neighbor Network Operating Modes -- 12.3. Coordinated Mode -- 12.3.1. Interfering Network List -- 12.3.2. Group of Networks -- 12.3.3. Determining a Compatible Schedule -- 12.3.3.1. Computing the INL Allocation -- 12.3.4. Communication Between Neighboring CCos -- 12.3.5. Neighbor Network Instantiation -- 12.3.5.1. Procedure to Establish a New Network in Coordinated Mode -- 12.3.5.2. Changing the Number of Beacon Slots -- 12.3.5.3. Setting the Value of SlotUsage Field -- 12.3.6. Procedure to Share Bandwidth in Coordinated Mode -- 12.3.7. Bandwidth Scheduling Rules -- 12.3.8. Procedure to Shut Down an AVLN -- 12.3.9. AC Line Cycle Synchronization in Coordinated Mode -- 12.4. Passive Coordination in CSMA-Only Mode -- 12.5. Neighbor Network Bandwidth Sharing Policy -- 12.6. Summary -- 13. Management Messages -- 13.1. Introduction -- 13.2. Management Message Format -- 13.2.1. Original Destination Address (ODA) -- 13.2.2. Original Source Address (OSA) -- 13.2.3. VLAN Tag -- 13.2.4. MTYPE -- 13.2.5. Management Message Version (MMV) -- 13.2.6. Management Message Type (MMTYPE) -- 13.2.7. Fragment Management Information -- 13.2.8. Management Message Entry Data (MME) -- 13.2.9. MMEPAD -- 13.3. Station-Central Coordination (CCo) -- 13.4. Proxy Coordinator (PCO) Messages -- 13.5. Central Coordinator-Central Coordinator -- 13.6. Station-Station -- 13.7. Manufacturer-Specific Messages -- 13.8. Vendor-Specific Messages -- 13.9. Summary -- 14. IEEE 1901 -- 14.1. Introduction -- 14.2. FFT -- 14.2.1. 30-50 MHz Frequency Band -- 14.2.2. Additional Guard Intervals -- 14.2.3. 4096 QAM -- 14.2.4. 16/18 Code Rate -- 14.2.5. SNID Reuse -- 14.2.6. Repeating and Routing -- 14.2.6.1. Repeating and Routing of Unicast MSDUs -- 14.2.6.2. Repeating and Routing of Broadcast/Multicast MSDUs -- 14.3. Wavelet -- 14.3.1. Baseband PHY -- 14.3.2. Bandpass PHY -- 14.3.2.1. Wavelet MAC -- 14.3.3. Transceiver Block Diagram -- 14.3.4. PPDU Format -- 14.3.4.1. Overview of the PPDU Encoding/Decoding Process -- 14.3.4.2. Modulation-Dependent Parameters -- 14.3.5. PHY Encoder -- 14.3.5.1. Generator for RCE Frame -- 14.3.5.2. Scrambler -- 14.3.5.3. CRC Encoder for FL -- 14.3.5.4. Concatenated Encoder -- 14.3.5.5. Convolutional Codes Defined by Low-Density Parity-Check Polynomials (Optional) -- 14.3.5.6. FEC Type Field -- 14.3.5.7. Interleaver -- 14.3.5.8. Wavelet Process -- 14.3.5.9. Major Specifications -- 14.3.5.10. Notch and Power Control -- 14.3.5.11. System Clock Frequency Tolerance -- 14.4. Coexistence -- 14.4.1. Coexistence Signals -- 14.4.2. ISP Signaling Scheme -- 14.4.2.1. ISP Fields -- 14.4.2.2. Network Status -- 14.4.3. Coexistence Resources -- 14.4.3.1. FDM -- 14.4.3.2. TDM -- 14.4.4. ISP Resource Allocation -- 14.4.5. ISP Parameters -- 14.4.6. Management Messages -- 14.5. Summary -- 15. HomePlug Green PHY -- 15.1. Introduction -- 15.2. Physical Layer -- 15.3. MAC Layer -- 15.3.1. Power Save -- 15.3.1.1. Distribution of Power Save State Information -- 15.3.1.2. CCo Power Save -- 15.3.2. Bandwidth Sharing Between Green PHY and HomePlug AV and IEEE -- 15.3.2.1. Green PHY Preferred Allocation -- 15.3.2.2. Distributed Bandwidth Control -- 15.3.3. PEV-EVSE Association -- 15.3.3.1. PEV-EVSE Association Procedure -- 15.4. Summary -- 16. HomePlug AV2 -- 16.1. Introduction -- 16.2. MIMO -- 16.3. Extended Frequency Band -- 16.3.1. Power BackOff -- 16.4. Efficient Notching -- 16.5. Short Delimiter and Delayed Acknowledgment -- 16.5.1. Short Delimiter -- 16.5.2. Delayed Acknowledgment -- 16.5.3. TCP and UDP Efficiency Improvements -- 16.6. Immediate Repeating -- 16.7. Power Save -- 16.8. Summary
Summary The only authorized book explaining the HomePlug networking standards HomePlug is a growing technology for creating highspeed Power Line Communication (PLC) networks by transmitting data over inhome or inoffice power lines. Users only need to plug adapters into wall outlets to create an instant network of computers, printers, routers, home entertainment devices, and appliance control systems. HomePlug AV and IEEE 1901: A Handbook for PLC Designers and Users provides for the first time an opportunity for nonmembers of the HomePlug Alliance to gain indepth insight into the design and operation of the HomePlug standards. Offering a clear and simple description of the standards, this groundbreaking resource presents HomePlug AV and the associated IEEE 1901 standards in terms more readily understood by a much wider audience, including nontechnical managers, engineers, students, and HomePlug designers. The book details the many benefits of HomePlug AV, including: An affordable, secure alternative or complement to WiFiespecially in buildings where WiFi reception is poor or running new network wires is impractical Higher potential data transmission rates up to 200 Mbps Support for multimedia applications such as HDTV and VoIP The book also provides an overview of the HomePlug Green PHY standard that is targeted for use in smart energy applications, and the HomePlug AV 2.0 standard that operates at up to 1.5 Gbps. An essential tool for designers of HomePlug devices, network administrators, and individual users of HomePlug networks who need to understand the features and capabilities of HomePlug, HomePlug AV and IEEE 1901: A Handbook for PLC Designers and Users will also prove useful for researchers in academia and the power line communications industry
Bibliography Includes bibliographical references (pages 334-335) and index
Notes Print version record and CIP data provided by publisher
Subject Electric lines -- Carrier transmission -- Design and construction
Home computer networks -- Design and construction
COMPUTERS -- Data Transmission Systems -- General.
Form Electronic book
LC no. 2012047310
ISBN 9781118527405
1118527402
9781118527504
111852750X
9781118527542
1118527542
9781118527535
1118527534
9781299277205
1299277209