Limit search to available items
Book Cover
E-book
Author Andrews, Larry C

Title Laser beam propagation through random media / Larry C. Andrews, Ronald L. Phillips
Edition 2nd ed
Published Bellingham, Wash. : SPIE, 2005

Copies

Description 1 online resource (xxiii, 782 pages) : illustrations
Series SPIE Press monograph ; PM152
SPIE monograph ; PM152
Contents Part I. Basic theory. 1. Prologue -- 1.1. Introduction -- 1.2. Historical background of light -- 1.3. Optical wave models -- 1.4. Atmospheric effects -- 1.5. Application areas -- 1.6. A brief review of communication systems -- 1.7. Summary and overview of the book -- references
2. Random processes and random fields -- 2.1. Introduction -- 2.2. Probabilistic description of random process -- 2.3. Ensemble averages -- 2.4. Time averages and ergodicity -- 2.5. Power spectral density functions -- 2.6. Random fields -- 2.7. Summary and discussion -- 2.8. Worked examples -- problems -- references
3. Optical turbulence in the atmosphere -- 3.1. Introduction -- 3.2. Kolmogorov theory of turbulence -- 3.3. Power spectrum models for refractive-index fluctuations -- 3.4. Atmospheric temporal statistics -- 3.5. Summary and discussion -- 3.6. Worked examples -- problems -- references
4. Free-space propagation of Gaussian-beam waves -- 4.1. Introduction -- 4.2. Paraxial wave equation -- 4.3. Optical wave models -- 4.4. Diffractive properties of Gaussian-beam waves -- 4.5. Geometrical interpretations, Part I -- 4.6. Geometrical interpretations, Part II -- 4.7. Higher-order Gaussian-beam modes -- 4.8. Abcd ray-matrix representations -- 4.9. Single element optical system -- 4.10. Summary and discussion -- 4.11. Worked examples -- problems -- references
5. Classical theory for propagation through random media -- 5.1. Introduction -- 5.2. Stochastic wave equation -- 5.3. Born approximation -- 5.4. Rytov approximation -- 5.5. Linear systems analogy -- 5.6. Rytov approximation for abcd optical systems -- 5.7. Classical distribution models -- 5.8. Other methods of analysis -- 5.9. Extended Rytov theory -- 5.10. Summary and discussion -- 5.11. Worked examples -- problems -- references
6. Second-order statistics: weak fluctuation theory -- 6.1. Introduction -- 6.2. Basic concepts -- 6.3. Mutual coherence function -- 6.4. Spatial coherence radius -- 6.5. Angle-of-arrival fluctuations -- 6.6. Beam wander -- 6.7. Angular and temporal frequency spectra -- 6.8. Slant paths -- 6.9. Summary and discussion -- 6.10. Worked examples -- problems -- references
7. Second-order statistics: strong fluctuation theory -- 7.1. Introduction -- 7.2. Parabolic equation method -- 7.3. Extended Huygens-Fresnel principle -- 7.4. Method of effective beam parameters -- 7.5. Summary and discussion -- 7.6. Worked examples -- problems -- references
8. Fourth-order statistics: weak fluctuation theory -- 8.1. Introduction -- 8.2. Scintillation index -- 8.3. Beam wander and scintillation -- 8.4. Covariance function of irradiance -- 8.5. Temporal spectrum of irradiance -- 8.6. Phase fluctuations -- 8.7. Slant paths -- 8.8. Summary and discussion -- 8.9. Worked examples -- problems -- references
9. Fourth-order statistics: strong fluctuation theory -- 9.1. Introduction -- 9.2. Modeling optical scintillation -- 9.3. Asymptotic theory -- 9.4. Scintillation theory: plane wave model -- 9.5. Scintillation theory: spherical wave model -- 9.6. Scintillation theory: Gaussian-beam wave model -- 9.7. Covariance function of irradiance -- 9.8. Temporal spectrum of irradiance -- 9.9. Distribution models for the irradiance -- 9.10. Gamma-gamma distribution -- 9.11. Summary and discussion -- 9.12. Worked examples -- Problems -- References
10. Propagation through complex paraxial ABCD optical systems -- 10.1. Introduction -- 10.2. Single element optical system -- 10.3. Aperture averaging -- 10.4. Optical systems with several optical elements -- 10.5. Summary and discussion -- 10.6. Worked examples -- Problems -- References
Part II. Applications. -- 11. Free-space optical communication systems -- 11.1. Introduction -- 11.2. Direct detection optical receivers -- 11.3. Fade statistics, Part i -- 11.4. Fade statistics, Part ii -- 11.5. Spatial diversity receivers -- 11.6. Summary and discussion -- 11.7. Worked examples -- Problems -- References
12. Laser satellite communication systems -- 12.1. Introduction -- 12.2. Atmospheric channels -- 12.3. Background -- 12.4. Second-order statistics -- 12.5. Irradiance statistics: downlink channel -- 12.6. Irradiance statistics: uplink channel -- 12.7. Fade statistics: downlink channels -- 12.8. Fade statistics: uplink channels -- 12.9. Summary and discussion -- 12.10. Worked examples -- Problems -- References
13. Double-passage problems: laser radar systems -- 13.1. Introduction -- 13.2. Laser radar configuration -- 13.3. Modeling the backscattered wave -- 13.4. Finite smooth target, pt. I -- 13.5. Finite smooth target, pt. II -- 13.6. Finite smooth reflector, pt. III -- 13.7. Unresolved (point) target -- 13.8. Diffuse target -- 13.9. Summary and discussion -- 13.10. Worked examples -- Problems -- References
14. Imaging systems analysis -- 14.1. Introduction -- 14.2. Coherent imaging systems -- 14.3. Incoherent imaging systems -- 14.4. Laser imaging radar -- 14.5. Zernike polynomials -- 14.6. Summary and discussion -- 14.7. Worked examples -- Problems -- References
Part III. Related topics. -- 15. Propagation through random phase screens -- 15.1. Introduction -- 15.2. Random phase screen models -- 15.3. Mutual coherence function -- 15.4. Scintillation index and covariance function -- 15.5. Multiple phase screens -- 15.6. Summary and discussion -- Problems -- References
16. Partially coherent beams -- 16.1. Introduction -- 16.2. Basic beam parameters -- 16.3. Mutual coherence function, pt. I -- 16.4. Mutual coherence function, pt. II -- 16.5. Scintillation index, pt. I -- 16.6. Scintillation index, pt. II -- 16.7. FSO communication systems -- 16.8. Ladar model in free space -- 16.9. Ladar model in optical turbulence -- 16.10. Summary and discussion -- 16.11. Worked examples -- Problems -- References
17. Other beam shapes -- 17.1. Introduction -- 17.2. Beam spreading: higher-order Gaussian beams -- 17.3. Annular beam -- 17.4. Other beams -- 17.5. Summary and discussion -- Problems -- References
18. Pulse propagation -- 18.1. Introduction -- 18.2. Background -- 18.3. Two-frequency mutual coherence function -- 18.4. Four-frequency cross-coherence function -- 18.5. Summary and discussion -- Problems -- References
Appendix I. Special functions -- Appendix II. Integral table -- Appendix III. Tables of beam statistics -- Index
Summary Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus expanded analysis of free-space optical communication systems and imaging systems
Notes "SPIE digital library."
Bibliography Includes bibliographical references and index
Notes Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212 MiAaHDL
digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL
Subject Atmospheric turbulence.
Laser beams.
Laser beams -- Atmospheric effects.
TECHNOLOGY & ENGINEERING -- Mechanical.
Atmospheric turbulence
Laser beams
Laser beams -- Atmospheric effects
Form Electronic book
Author Phillips, Ronald L., 1942-
Society of Photo-Optical Instrumentation Engineers.
ISBN 9780819478320
0819478326