Limit search to available items
Book Cover
E-book
Author Kapur, Kailash C., 1941-

Title Reliability engineering / Kailash C. Kapur, Michael Pecht
Published Hoboken, New Jersey : Wiley, [2014]
Online access available from:
Wiley Online Books    View Resource Record  

Copies

Description 1 online resource
Contents Machine generated contents note: 1.1. What Is Quality? -- 1.2. What Is Reliability? -- 1.2.1. The Ability to Perform as Intended -- 1.2.2. For a Specified Time -- 1.2.3. Life-Cycle Conditions -- 1.2.4. Reliability as a Relative Measure -- 1.3. Quality, Customer Satisfaction, and System Effectiveness -- 1.4. Performance, Quality, and Reliability -- 1.5. Reliability and the System Life Cycle -- 1.6. Consequences of Failure -- 1.6.1. Financial Loss -- 1.6.2. Breach of Public Trust -- 1.6.3. Legal Liability -- 1.6.4. Intangible Losses -- 1.7. Suppliers and Customers -- 1.8. Summary -- Problems -- 2.1. Basic Reliability Concepts -- 2.1.1. Concept of Probability Density Function -- 2.2. Hazard Rate -- 2.2.1. Motivation and Development of Hazard Rate -- 2.2.2. Some Properties of the Hazard Function -- 2.2.3. Conditional Reliability -- 2.3. Percentiles Product Life -- 2.4. Moments of Time to Failure -- 2.4.1. Moments about Origin and about the Mean -- 2.4.2. Expected Life or Mean Time to Failure -- 2.4.3. Variance or the Second Moment about the Mean -- 2.4.4. Coefficient of Skewness -- 2.4.5. Coefficient of Kurtosis -- 2.5. Summary -- Problems -- 3.1. Discrete Distributions -- 3.1.1. Binomial Distribution -- 3.1.2. Poisson Distribution -- 3.1.3. Other Discrete Distributions -- 3.2. Continuous Distributions Si -- 3.2.1. Weibull Distribution -- 3.2.2. Exponential Distribution -- 3.2.3. Estimation of Reliability for Exponential Distribution -- 3.2.4. The Normal (Gaussian) Distribution -- 3.2.5. The Lognormal Distribution -- 3.2.6. Gamma Distribution -- 3.3. Probability Plots -- 3.4. Summary -- Problems -- 4.1. What Is Six Sigma? -- 4.2. Why Six Sigma? -- 4.3. How Is Six Sigma Implemented? -- 4.3.1. Steps in the Six Sigma Process -- 4.3.2. Summary of the Six Sigma Steps -- 4.4. Optimization Problems in the Six Sigma Process -- 4.4.1. System Transfer Function -- 4.4.2. Variance Transmission Equation -- 4.4.3. Economic Optimization and Quality Improvement -- 4.4.4. Tolerance Design Problem -- 4.5. Design for Six Sigma -- 4.5.1. Identify (I) -- 4.5.2. Characterize (C) -- 4.5.3. Optimize (O) -- 4.5.4. Verify (V) -- 4.6. Summary -- Problems -- 5.1. Product Requirements and Constraints -- 5.2. Product Life Cycle Conditions -- 5.3. Reliability Capability -- 5.4. Parts and Materials Selection -- 5.5. Human Factors and Reliability -- 5.6. Deductive versus Inductive Methods -- 5.7. Failure Modes, Effects, and Criticality Analysis -- 5.8. Fault Tree Analysis -- 5.8.1. Role of FTA in Decision-Making -- 5.8.2. Steps of Fault Tree Analysis -- 5.8.3. Basic Paradigms for the Construction of Fault Trees -- 5.8.4. Definition of the Top Event -- 5.8.5. Faults versus Failures -- 5.8.6. Minimal Cut Sets -- 5.9. Physics of Failure -- 5.9.1. Stress Margins -- 5.9.2. Model Analysis of Failure Mechanisms -- 5.9.3. Derating -- 5.9.4. Protective Architectures -- 5.9.5. Redundancy -- 5.9.6. Prognostics -- 5.10. Design Review -- 5.11. Qualification -- 5.12. Manufacture and Assembly -- 5.12.1. Manufacturability -- 5.12.2. Process Verification Testing -- 5.13. Analysis, Product Failure, and Root Causes -- 5.14. Summary -- Problems -- 6.1. Defining Requirements -- 6.2. Responsibilities of the Supply Chain -- 6.2.1. Multiple-Customer Products -- 6.2.2. Single-Customer Products -- 6.2.3. Custom Products -- 6.3. The Requirements Document -- 6.4. Specifications -- 6.5. Requirements Tracking -- 6.6. Summary -- Problems -- 7.1. Defining the Life-Cycle Profile -- 7.2. Life-Cycle Events -- 7.2.1. Manufacturing and Assembly -- 7.2.2. Testing and Screening -- 7.2.3. Storage -- 7.2.4. Transportation -- 7.2.5. Installation -- 7.2.6. Operation -- 7.2.7. Maintenance -- 7.3. Loads and Their Effects -- 7.3.1. Temperature -- 7.3.2. Humidity -- 7.3.3. Vibration and Shock -- 7.3.4. Solar Radiation -- 7.3.5. Electromagnetic Radiation -- 7.3.6. Pressure -- 7.3.7. Chemicals -- 7.3.8. Sand and Dust -- 7.3.9. Voltage -- 7.3.10. Current -- 7.3.11. Human Factors -- 7.4. Considerations and Recommendations for LCP Development -- 7.4.1. Extreme Specifications-Based Design (Global and Local Environments) -- 7.4.2. Standards-Based Profiles -- 7.4.3. Combined Load Conditions -- 7.4.4. Change in Magnitude and Rate of Change of Magnitude -- 7.5. Methods for Estimating Life-Cycle Loads -- 7.5.1. Market Studies and Standards Based Profiles as Sources of Data -- 7.5.2. In Situ Monitoring of Load Conditions -- 7.5.3. Field Trial Records, Service Records, and Failure Records -- 7.5.4. Data on Load Histories of Similar Parts, Assemblies, or Products -- 7.6. Summary -- Problems -- 8.1. Capability Maturity Models
8.2. Key Reliability Practices -- 8.2.1. Reliability Requirements and Planning -- 8.2.2. Training and Development -- 8.2.3. Reliability Analysis -- 8.2.4. Reliability Testing -- 8.2.5. Supply-Chain Management -- 8.2.6. Failure Data Tracking and Analysis -- 8.2.7. Verification and Validation -- 8.2.8. Reliability Improvement -- 8.3. Summary -- Problems -- 9.1. Part Assessment Process -- 9.1.1. Performance Assessment -- 9.1.2. Quality Assessment -- 9.1.3. Process Capability Index -- 9.1.4. Average Outgoing Quality -- 9.1.5. Reliability Assessment -- 9.1.6. Assembly Assessment -- 9.2. Parts Management -- 9.2.1. Supply Chain Management -- 9.2.2. Part Change Management -- 9.2.3. Industry Change Control Policies -- 9.3. Risk Management -- 9.4. Summary -- Problems -- 10.1. Development of FMMEA -- 10.2. Failure Modes, Mechanisms, and Effects Analysis -- 10.2.1. System Definition, Elements, and Functions -- 10.2.2. Potential Failure Modes -- 10.2.3. Potential Failure Causes -- 10.2.4. Potential Failure Mechanisms -- 10.2.5. Failure Models -- 10.2.6. Life-Cycle Profile -- 10.2.7. Failure Mechanism Prioritization -- 10.2.8. Documentation -- 10.3. Case Study -- 10.4. Summary -- Problems -- 11.1. Design for Reliability -- 11.2. Design of a Tension Element -- 11.3. Reliability Models for Probabilistic Design -- 11.4. Example of Probabilistic Design and Design for a Reliability Target -- 11.5. Relationship between Reliability, Factor of Safety, and Variability -- 11.6. Functions of Random Variables -- 11.7. Steps for Probabilistic Design -- 11.8. Summary -- Problems -- 12.1. Part Ratings -- 12.1.1. Absolute Maximum Ratings -- 12.1.2. Recommended Operating Conditions -- 12.1.3. Factors Used to Determine Ratings -- 12.2. Derating -- 12.2.1. How Is Derating Practiced? -- 12.2.2. Limitations of the Derating Methodology -- 12.2.3. How to Determine These Limits -- 12.3. Uprating -- 12.3.1. Parts Selection and Management Process -- 12.3.2. Assessment for Uprateability -- 12.3.3. Methods of Uprating -- 12.3.4. Continued Assurance -- 12.4. Summary -- Problems -- 13.1. Tests during the Product Life Cycle -- 13.1.1. Concept Design and Prototype -- 13.1.2. Performance Validation to Design Specification -- 13.1.3. Design Maturity Validation -- 13.1.4. Design and Manufacturing Process Validation -- 13.1.5. Preproduction Low Volume Manufacturing -- 13.1.6. High Volume Production -- 13.1.7. Feedback from Field Data -- 13.2. Reliability Estimation -- 13.3. Product Qualification and Testing -- 13.3.1. Input to PoF Qualification Methodology -- 13.3.2. Accelerated Stress Test Planning and Development -- 13.3.3. Specimen Characterization -- 13.3.4. Accelerated Life Tests -- 13.3.5. Virtual Testing -- 13.3.6. Virtual Qualification -- 13.3.7. Output -- 13.4. Case Study: System-in-Package Drop Test Qualification -- 13.4.1. Step 1: Accelerated Test Planning and Development -- 13.4.2. Step 2: Specimen Characterization -- 13.4.3. Step 3: Accelerated Life Testing -- 13.4.4. Step 4: Virtual Testing -- 13.4.5. Global FEA -- 13.4.6. Strain Distributions Due to Modal Contributions -- 13.4.7. Acceleration Curves -- 13.4.8. Local FEA -- 13.4.9. Step 5: Virtual Qualification -- 13.4.10. PoF Acceleration Curves -- 13.4.11. Summary of the Methodology for Qualification -- 13.5. Basic Statistical Concepts -- 13.5.1. Confidence Interval -- 13.5.2. Interpretation of the Confidence Level -- 13.5.3. Relationship between Confidence Interval and Sample Size -- 13.6. Confidence Interval for Normal Distribution -- 13.6.1. Unknown Mean with a Known Variance for Normal Distribution -- 13.6.2. Unknown Mean with an Unknown Variance for Normal Distribution -- 13.6.3. Differences in Two Population Means with Variances Known -- 13.7. Confidence Intervals for Proportions -- 13.8. Reliability Estimation and Confidence Limits for Success-Failure Testing -- 13.8.1. Success Testing -- 13.9. Reliability Estimation and Confidence Limits for Exponential Distribution -- 13.10. Summary -- Problems -- 14.1. Process Control System -- 14.1.1. Control Charts: Recognizing Sources of Variation -- 14.1.2. Sources of Variation -- 14.1.3. Use of Control Charts for Problem Identification -- 14.2. Control Charts -- 14.2.1. Control Charts for Variables -- 14.2.2. X-Bar and R Charts -- 14.2.3. Moving Range Chart Example -- 14.2.4. X-Bar and S Charts -- 14.2.5. Control Charts for Attributes -- 14.2.6. p Chart and np Chart -- 14.2.7. np Chart Example -- 14.2.8. c Chart and u Chart -- 14.2.9. c Chart Example -- 14.3. Benefits of Control Charts -- 14.4. Average Outgoing Quality -- 14.4.1. Process Capability Studies
Note continued: 14.5. Advanced Control Charts -- 14.5.1. Cumulative Sum Control Charts -- 14.5.2. Exponentially Weighted Moving Average Control Charts -- 14.5.3. Other Advanced Control Charts -- 14.6. Summary -- Problems -- 15.1. Burn-In Data Observations -- 15.2. Discussion of Burn-In Data -- 15.3. Higher Field Reliability without Screening -- 15.4. Best Practices -- 15.5. Summary -- Problems -- 16.1. Root-Cause Analysis Processes -- 16.1.1. Preplanning -- 16.1.2. Collecting Data for Analysis and Assessing Immediate Causes -- 16.1.3. Root-Cause Hypothesization -- 16.1.4. Analysis and Interpretation of Evidence -- 16.1.5. Root-Cause Identification and Corrective Actions -- 16.1.6. Assessment of Corrective Actions -- 16.2. No-Fault-Found -- 16.2.1. An Approach to Assess NFF -- 16.2.2. Common Mode Failure -- 16.2.3. Concept of Common Mode Failure -- 16.2.4. Modeling and Analysis for Dependencies for Reliability Analysis -- 16.2.5. Common Mode Failure Root Causes -- 16.2.6. Common Mode Failure Analysis -- 16.2.7. Common Mode Failure Occurrence and Impact Reduction -- 16.3. Summary -- Problems -- 17.1. Reliability Block Diagram -- 17.2. Series System -- 17.3. Products with Redundancy -- 17.3.1. Active Redundancy -- 17.3.2. Standby Systems -- 17.3.3. Standby Systems with Imperfect Switching -- 17.3.4. Shared Load Parallel Models -- 17.3.5. (k, n) Systems -- 17.3.6. Limits of Redundancy -- 17.4. Complex System Reliability -- 17.4.1. Complete Enumeration Method -- 17.4.2. Conditional Probability Method -- 17.4.3. Concept of Coherent Structures -- 17.5. Summary -- Problems -- 18.1. Conceptual Model for Prognostics -- 18.2. Reliability and Prognostics -- 18.3. PHM for Electronics -- 18.4. PHM Concepts and Methods -- 18.4.1. Fuses and Canaries -- 18.5. Monitoring and Reasoning of Failure Precursors -- 18.5.1. Monitoring Environmental and Usage Profiles for Damage Modeling -- 18.6. Implementation of PHM in a System of Systems -- 18.7. Summary -- Problems -- 19.1. Product Warranties -- 19.2. Warranty Return Information -- 19.3. Warranty Policies -- 19.4. Warranty and Reliability -- 19.5. Warranty Cost Analysis -- 19.5.1. Elements of Warranty Cost Models -- 19.5.2. Failure Distributions -- 19.5.3. Cost Modeling Calculation -- 19.5.4. Modeling Assumptions and Notation -- 19.5.5. Cost Models Examples -- 19.5.6. Information Needs -- 19.5.7. Other Cost Models -- 19.6. Warranty and Reliability Management -- 19.7. Summary -- Problems
Summary Presents an integrated approach to the design, engineering, and management of reliability activities throughout the life cycle of a product, including concept, research and development, design, manufacturing, assembly, sales, and service. Containing illustrative guides that include worked problems, numerical examples, homework problems, a solutions manual, and class-tested materials, it demonstrates to product development and manufacturing professionals how to distribute key reliability practices throughout an organization. The authors explain how to integrate reliability methods and techniques in the Six Sigma process and Design for Six Sigma (DFSS). They also discuss relationships between warranty and reliability, as well as legal and liability issues. Other topics covered include: Reliability engineering in the 21st Century; Probability life distributions for reliability analysis; Process control and process capability; Failure modes, mechanisms, and effects analysis; Health monitoring and prognostics; Reliability tests and reliability estimation. Provides fundamental knowledge of the practical aspects of reliability in design, manufacturing, and testing and is useful for implementation and management of reliability programs.-- Edited summary from book
Notes Includes index
Bibliography Includes bibliographical references and index
Notes Print version record and CIP data provided by publisher
Subject Reliability (Engineering)
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Reliability (Engineering)
Form Electronic book
Author Pecht, Michael
LC no. 2013035674
ISBN 9781118841792
1118841794
9781118841686
1118841689
9781118841716
1118841719
1118140672
9781118140673
9781306638043
1306638046