Book Cover
E-book
Author Rieffel, Eleanor, 1965-

Title Quantum computing : a gentle introduction / Eleanor Rieffel and Wolfgang Polak
Published Cambridge, Mass. : MIT Press, 2011

Copies

Description 1 online resource (xiii, 372 pages) : illustrations
Series Scientific and engineering computation
Scientific and engineering computation.
Contents Machine generated contents note: 1. Introduction -- I. QUANTUM BUILDING BLOCKS -- 2. Single-Qubit Quantum Systems -- 2.1. The Quantum Mechanics of Photon Polarization -- 2.1.1. A Simple Experiment -- 2.1.2. A Quantum Explanation -- 2.2. Single Quantum Bits -- 2.3. Single-Qubit Measurement -- 2.4. A Quantum Key Distribution Protocol -- 2.5. The State Space of a Single-Qubit System -- 2.5.1. Relative Phases versus Global Phases -- 2.5.2. Geometric Views of the State Space of a Single Qubit -- 2.5.3. Comments on General Quantum State Spaces -- 2.6. References -- 2.7. Exercises -- 3. Multiple-Qubit Systems -- 3.1. Quantum State Spaces -- 3.1.1. Direct Sums of Vector Spaces -- 3.1.2. Tensor Products of Vector Spaces -- 3.1.3. The State Space of an n-Qubit System -- 3.2. Entangled States -- 3.3. Basics of Multi-Qubit Measurement -- 3.4. Quantum Key Distribution Using Entangled States -- 3.5. References -- 3.6. Exercises -- 4. Measurement of Multiple-Qubit States -- 4.1. Dirac's Bra/Ket Notation for Linear Transformations
4.2. Projection Operators for Measurement -- 4.3. Hermitian Operator Formalism for Measurement -- 4.3.1. The Measurement Postulate -- 4.4. EPR Paradox and Bell's Theorem -- 4.4.1. Setup for Bell's Theorem -- 4.4.2. What Quantum Mechanics Predicts -- 4.4.3. Special Case of Bell's Theorem: What Any Local Hidden Variable Theory Predicts -- 4.4.4. Bell's Inequality -- 4.5. References -- 4.6. Exercises -- 5. Quantum State Transformations -- 5.1. Unitary Transformations -- 5.1.1. Impossible Transformations: The No-Cloning Principle -- 5.2. Some Simple Quantum Gates -- 5.2.1. The Pauli Transformations -- 5.2.2. The Hadamard Transformation -- 5.2.3. Multiple-Qubit Transformations from Single-Qubit Transformations -- 5.2.4. The Controlled-not and Other Singly Controlled Gates -- 5.3. Applications of Simple Gates -- 5.3.1. Dense Coding -- 5.3.2. Quantum Teleportation -- 5.4. Realizing Unitary Transformations as Quantum Circuits -- 5.4.1. Decomposition of Single-Qubit Transformations -- 5.4.2. Singly-Controlled Single-Qubit Transformations -- 5.4.3. Multiply-Controlled Single-Qubit Transformations
5.4.4. General Unitary Transformations -- 5.5. A Universally Approximating Set of Gates -- 5.6. The Standard Circuit Model -- 5.7. References -- 5.8. Exercises -- 6. Quantum Versions of Classical Computations -- 6.1. From Reversible Classical Computations to Quantum Computations -- 6.1.1. Reversible and Quantum Versions of Simple Classical Gates -- 6.2. Reversible Implementations of Classical Circuits -- 6.2.1. A Naive Reversible Implementation -- 6.2.2. A General Construction -- 6.3. A Language for Quantum Implementations -- 6.3.1. The Basics -- 6.3.2. Functions -- 6.4. Some Example Programs for Arithmetic Operations -- 6.4.1. Efficient Implementation of and -- 6.4.2. Efficient Implementation of Multiply-Controlled Single-Qubit Transformations -- 6.4.3. In-Place Addition -- 6.4.4. Modular Addition -- 6.4.5. Modular Multiplication -- 6.4.6. Modular Exponentiation -- 6.5. References -- 6.6. Exercises -- II. QUANTUM ALGORITHMS -- 7. Introduction to Quantum Algorithms -- 7.1. Computing with Superpositions -- 7.1.1. The Walsh-Hadamard Transformation
7.1.2. Quantum Parallelism -- 7.2. Notions of Complexity -- 7.2.1. Query Complexity -- 7.2.2. Communication Complexity -- 7.3. A Simple Quantum Algorithm -- 7.3.1. Deutsch's Problem -- 7.4. Quantum Subroutines -- 7.4.1. The Importance of Unentangling Temporary Qubits in Quantum Subroutines -- 7.4.2. Phase Change for a Subset of Basis Vectors -- 7.4.3. State-Dependent Phase Shifts -- 7.4.4. State-Dependent Single-Qubit Amplitude Shifts -- 7.5. A Few Simple Quantum Algorithms -- 7.5.1. Deutsch-Jozsa Problem -- 7.5.2. Bernstein-Vazirani Problem -- 7.5.3. Simon's Problem -- 7.5.4. Distributed Computation -- 7.6. Comments on Quantum Parallelism -- 7.7. Machine Models and Complexity Classes -- 7.7.1. Complexity Classes -- 7.7.2. Complexity: Known Results -- 7.8. Quantum Fourier Transformations -- 7.8.1. The Classical Fourier Transform -- 7.8.2. The Quantum Fourier Transform -- 7.8.3. A Quantum Circuit for Fast Fourier Transform -- 7.9. References -- 7.10. Exercises -- 8. Shor's Algorithm -- 8.1. Classical Reduction to Period-Finding
8.2. Shor's Factoring Algorithm -- 8.2.1. The Quantum Core -- 8.2.2. Classical Extraction of the Period from the Measured Value -- 8.3. Example Illustrating Shor's Algorithm -- 8.4. The Efficiency of Shor's Algorithm -- 8.5. Omitting the Internal Measurement -- 8.6. Generalizations -- 8.6.1. The Discrete Logarithm Problem -- 8.6.2. Hidden Subgroup Problems -- 8.7. References -- 8.8. Exercises -- 9. Graver's Algorithm and Generalizations -- 9.1. Graver's Algorithm -- 9.1.1. Outline -- 9.1.2. Setup -- 9.1.3. The Iteration Step -- 9.1.4. How Many Iterations? -- 9.2. Amplitude Amplification -- 9.2.1. The Geometry of Amplitude Amplification -- 9.3. Optimality of Grover's Algorithm -- 9.3.1. Reduction to Three Inequalities -- 9.3.2. Proofs of the Three Inequalities -- 9.4. Derandomization of Grover's Algorithm and Amplitude Amplification -- 9.4.1. Approach 1: Modifying Each Step -- 9.4.2. Approach 2: Modifying Only the Last Step -- 9.5. Unknown Number of Solutions -- 9.5.1. Varying the Number of Iterations -- 9.5.2. Quantum Counting
9.6. Practical Implications of Grover's Algorithm and Amplitude Amplification -- 9.7. References -- 9.8. Exercises -- III. ENTANGLED SUBSYSTEMS AND ROBUST QUANTUM COMPUTATION -- 10. Quantum Subsystems and Properties of Entangled States -- 10.1. Quantum Subsystems and Mixed States -- 10.1.1. Density Operators -- 10.1.2. Properties of Density Operators -- 10.1.3. The Geometry of Single-Qubit Mixed States -- 10.1.4. Von Neumann Entropy -- 10.2. Classifying Entangled States -- 10.2.1. Bipartite Quantum Systems -- 10.2.2. Classifying Bipartite Pure States up to LOCC Equivalence -- 10.2.3. Quantifying Entanglement in Bipartite Mixed States -- 10.2.4. Multipartite Entanglement -- 10.3. Density Operator Formalism for Measurement -- 10.3.1. Measurement of Density Operators -- 10.4. Transformations of Quantum Subsystems and Decoherence -- 10.4.1. Superoperators -- 10.4.2. Operator Sum Decomposition -- 10.4.3. A Relation Between Quantum State Transformations and Measurements -- 10.4.4. Decoherence -- 10.5. References -- 10.6. Exercises -- 11. Quantum Error Correction
11.1. Three Simple Examples of Quantum Error Correcting Codes -- 11.1.1. A Quantum Code That Corrects Single Bit-Flip Errors -- 11.1.2. A Code for Single-Qubit Phase-Flip Errors -- 11.1.3. A Code for All Single-Qubit Errors -- 11.2. Framework for Quantum Error Correcting Codes -- 11.2.1. Classical Error Correcting Codes -- 11.2.2. Quantum Error Correcting Codes -- 11.2.3. Correctable Sets of Errors for Classical Codes -- 11.2.4. Correctable Sets of Errors for Quantum Codes -- 11.2.5. Correcting Errors Using Classical Codes -- 11.2.6. Diagnosing and Correcting Errors Using Quantum Codes -- 11.2.7. Quantum Error Correction across Multiple Blocks -- 11.2.8. Computing on Encoded Quantum States -- 11.2.9. Superpositions and Mixtures of Correctable Errors Are Correctable -- 11.2.10. The Classical Independent Error Model -- 11.2.11. Quantum Independent Error Models -- 11.3. CSS Codes -- 11.3.1. Dual Classical Codes -- 11.3.2. Construction of CSS Codes from Classical Codes Satisfying a Duality Condition -- 11.3.3. The Steane Code -- 11.4. Stabilizer Codes
13.4. Alternatives to the Circuit Model of Quantum Computation -- 13.4.1. Measurement-Based Cluster State Quantum Computation -- 13.4.2. Adiabatic Quantum Computation -- 13.4.3. Holonomic Quantum Computation -- 13.4.4. Topological Quantum Computation -- 13.5. Quantum Protocols -- 13.6. Insight into Classical Computation -- 13.7. Building Quantum Computers -- 13.8. Simulating Quantum Systems -- 13.9. Where Does the Power of Quantum Computation Come From? -- 13.10. What if Quantum Mechanics Is Not Quite Correct? -- APPENDIXES -- A. Some Relations Between Quantum Mechanics and Probability Theory -- A.1. Tensor Products in Probability Theory -- A.2. Quantum Mechanics as a Generalization of Probability Theory -- A.3. References -- A.4. Exercises -- B. Solving the Abelian Hidden Subgroup Problem
B.1. Representations of Finite Abelian Groups -- B.1.1. Schur's Lemma -- B.2. Quantum Fourier Transforms for Finite Abelian Groups -- B.2.1. The Fourier Basis of an Abelian Group -- B.2.2. The Quantum Fourier Transform Over a Finite Abelian Group -- B.3. General Solution to the Finite Abelian Hidden Subgroup Problem -- B.4. Instances of the Abelian Hidden Subgroup Problem -- B.4.1. Simon's Problem -- B.4.2. Shor's Algorithm: Finding the Period of a Function -- B.5. Comments on the Non-Abelian Hidden Subgroup Problem -- B.6. References -- B.7. Exercises
Summary A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples
Bibliography Includes bibliographical references and indexes
Notes English
Print version record
Subject Quantum computers.
Quantum theory.
Quantum Theory
COMPUTERS -- Hardware -- Mainframes & Minicomputers.
Quantum computers
Quantum theory
Kvantdatorer.
Kvantteori.
Form Electronic book
Author Polak, Wolfgang, 1950-
LC no. 2010022682
ISBN 9780262295390
0262295393
0262295067
9780262295062