Limit search to available items
Book Cover
E-book

Title Surface plasmon enhanced, coupled, and controlled fluorescence / edited by Chris D Geddes
Published Hoboken, New Jersey : John Wiley & Sons, Inc., [2017]
Online access available from:
ProQuest Ebook Central Subscription    View Resource Record  

Copies

Description 1 online resource
Contents Machine generated contents note: 1. Plasmonic-Fluorescent and Magnetic-Fluorescent Composite Nanoparticle as Multifunctional Cellular Probe / Nikhil Ranjan Jana -- 1.1. Introduction -- 1.2. Synthesis Design of Composite Nanoparticle -- 1.2.1. Method 1: Polyacrylate Coating-Based Composite of Nanoparticle and Organic Dye -- 1.2.2. Method 2: Polyacrylate Coating-Based Composite of Two Different Nanoparticles -- 1.2.3. Method 3: Ligand Exchange Approach-Based Composite of Two Different Nanoparticles -- 1.3. Property of Composite Nanoparticles -- 1.3.1. Optical Property -- 1.3.2. Fluorophore Lifetime Study -- 1.4. Functionalization and Labeling Application of Composite Nanoparticle -- 1.5. Conclusion -- 2. Compatibility of Metal-Induced Fluorescence Enhancement with Applications in Analytical Chemistry and Biosensing / Ewa M. Goldys -- 2.1. Introduction -- 2.2. Homogeneous Protein Sensing MIFE Substrates -- 2.2.1. Core -- Shell Approach -- 2.2.2. Homogeneous Large Au Nanoparticle Substrates -- 2.2.3. Commercial Klarite["! Substrate -- 2.3. Ag Fractal Structures -- 2.3.1. Reasons for High Enhancement Factors in Nanowire Structures -- 2.3.2. Ag Dendritic Structure -- Homogeneous Silver Fractal -- 2.4. MIFE with Membranes for Protein Dot Blots -- 2.5. MIFE with Flow Cytometry Beads and Single Particle Imaging -- 3. Plasmonic Enhancement of Molecule-Doped Core-Shell and Nanoshell on Molecular Fluorescence / Mao-Kuen Kuo -- 3.1. Introduction -- 3.2. Theory -- 3.2.1. Plane Wave Interacting with an Multilayered Sphere -- 3.2.2. Excited Dipole Interacting with a Multilayered Sphere -- 3.2.3. EF on Fluorescence -- 3.3. Numerical Results and Discussion -- 3.3.1. Core -- Shell -- 3.3.1.1. Au@SiO2 -- 3.3.1.2. Ag@SiO2 -- 3.3.2. Nanoshelled Nanocavity -- 3.3.2.1. Au NS -- 3.3.2.2. Ag NS -- 3.3.3. NS@SiO2 -- 3.3.3.1. AuNS@SiO2 -- 3.3.3.2. Ag NS@SiO2 -- 3.4. Conclusion -- 4. Controlling Metal-Enhanced Fluorescence Using Bimetallic Nanoparticles / Babu Joseph -- 4.1. Introduction -- 4.2. Experimental Methods -- 4.2.1. Synthesis -- 4.2.1.1. NP Synthesis by Sputtering and Annealing -- 4.2.1.2. Nanoparticle Synthesis by the Polyol Process -- 4.2.2. Particle Characterization -- 4.2.3. Fluorescence Spectroscopy -- 4.2.3.1. On Sputtered and Annealed Ag -- Cu NPs -- 4.2.3.2. On Ag -- Cu NPs Synthesized with the Polyol Process -- 4.3. Theoretical Modeling -- 4.3.1. Modeling SPR Using Mie Theory -- 4.3.2. Modeling of Metal-Enhanced Fluorescence Modified Gersten -- Nitzan Model -- 4.3.3. Modeling MEF Using Finite-Difference Time-Domain (FDTD) Calculations -- 4.4. Conclusion and Future Directions -- 5. Roles of Surface Plasmon Polaritons in Fluorescence Enhancement / H.C. Ong -- 5.1. Introduction -- 5.1.1. Surface Plasmon-Mediated Emission -- 5.1.2. Excitation of Propagating and Localized Surface Plasmon Polaritons in Periodic Metallic Arrays -- 5.1.3. Surface Plasmon-Mediated Emission from Periodic Arrays -- 5.2. Experimental -- 5.2.1. Sample Preparation -- 5.2.2. Optical Characterizations -- 5.3. Result and Discussion -- 5.3.1. Decay Lifetimes of Metallic Hole Arrays -- 5.3.2. Dependence of Decay Lifetime on Hole Size -- 5.3.3. Comparison between Dispersion Relation and PL Mapping -- 5.3.4. Comparison of the Coupling Rate Tb of Different SPP Modes -- 5.3.5. Photoluminescence Dependence on Hole Size -- 5.3.6. Dependence of Fluorescence Decay Lifetime on Hole Size -- 5.4. Conclusions -- 6. Fluorescence Excitation, Decay, and Energy Transfer in the Vicinity of Thin Dielectric/Metal/Dielectric Layers near Their Surface Plasmon Polariton Cutoff Frequency / Katrin G. Heinze -- 6.1. Introduction -- 6.2. Background -- 6.3. Theory -- 6.4. Summary -- 7. Metal-Enhanced Fluorescence in Biosensing Applications / Na Li -- 7.1. Introduction -- 7.2. Substrates -- 7.3. Distance Control -- 7.4. Summary and Outlook -- 8. Long-Range Metal-Enhanced Fluorescence / Ofer Kedem -- 8.1. Introduction -- 8.2. Collective Effects in NP Films -- 8.3. Investigations of Metal -- Fluorophore Interactions at Long Separations -- 8.3.1. Distance-Dependent Fluorescence of Tris(bipyridine)ruthenium(II) on Supported Plasmonic Gold NP Ensembles -- 8.3.2. Lifetime -- 8.3.3. Intensity -- 8.3.4. Emission Wavelength and Linewidth -- 8.4. Conclusions -- 9. Evolution, Stabilization, and Tuning of Metal-Enhanced Fluorescence in Aqueous Solution / Tarasankar Pal -- 9.1. Introduction -- 9.1.1. Coinage Metal Nanoparticles in Metal-Enhanced Fluorescence -- 9.2. Metal-Enhanced Fluorescence in Solution Phase -- 9.2.1. Metal-Enhanced Fluorescence from Metal(0) in Solution -- 9.2.1.1. Silver- and Gold-Enhanced Fluorescence -- 9.2.1.2. Selectivity for Silver-Enhanced Fluorescence -- 9.2.1.3. Silver-Enhanced Fluorescence in Diiminic Schiff Bases -- 9.2.1.4. Copper-Enhanced Fluorescence -- 9.2.1.5. Tuning of Metal-Enhanced Fluorescence -- 9.3. Applications of Metal-Enhanced Fluorescence -- 9.3.1. Sensing of Biomolecules -- 9.3.2. Sensing of Toxic Metals -- 9.4. Conclusion -- 10. Distance and Location-Dependent Surface Plasmon Resonance-Enhanced Photoluminescence in Tailored Nanostructures / Dong Ha Kim -- 10.1. Introduction -- 10.2. Effect of SPR in PL -- 10.2.1. Photoluminescence -- 10.2.1.1. Radiative Decay in MEF -- 10.2.1.2. Nonradiative Decay in MEF -- 10.2.2. Enhancement of Emission by SPR -- 10.2.2.1. Resonance Energy Transfer -- 10.2.2.2. NFE Mechanism -- 10.2.3. Quenching of Emission by SPR -- 10.3. Effect of SPR in FRET -- 10.3.1. FRET -- 10.3.2. SPR-Induced Enhanced FRET -- 10.3.3. Effect of the Position, Concentration, and Size of Plasmonic Nanostructures in FRET System -- 10.4. Conclusions and Outlook -- 11. Fluorescence Quenching by Plasmonic Silver Nanoparticles / M. Umadevi -- 11.1. Metal Nanoparticles -- 11.2. Fluorescence Quenching -- 11.3. Mechanism behind Quenching -- 12. AgOx Thin Film for Surface-Enhanced Raman Spectroscopy / Din Ping Tsai -- 12.1. Introduction -- 12.1.1. SERS on the Laser-Treated AgOx Thin Film -- 12.1.1.1. Experimental Method -- 12.1.1.2. Tunabe SERS Enhancement -- 12.1.1.3. SERS-Active Nanostructure Made on Flexible Substrate -- 12.1.2. Annealed AgOx Thin Film for SERS -- 12.2. Conclusion -- 13. Plasmon-Enhanced Two-Photon Excitation Fluorescence and Biomedical Applications / Qing-Hua Xu -- 13.1. Introduction -- 13.2. Metal -- Chromophore Interactions -- 13.3. Plasmon-Enhanced One-Photon Excitation Fluorescence -- 13.4. Plasmon-Enhanced Two-Photon Excitation Fluorescence -- 13.5. Conclusions and Outlook -- 14. Fluorescence Biosensors Utilizing Grating-Assisted Plasmonic Amplification / Jakub Dostalek -- 14.1. Introduction -- 14.2. SPCE in Vicinity to Metallic Surface -- 14.3. SPCE Utilizing SP Waves with Small Losses -- 14.4. Nondiffractive Grating Structures for Angular Control of SPCE -- 14.5. Diffractive Grating Structures for Angular Control of SPCE -- 14.6. Implementation of Grating-Assisted SPCE to Biosensors -- 14.7. Summary -- 15. Surface Plasmon-Coupled Emission: Emerging Paradigms and Challenges for Bioapplication / Yao-Qun Li -- 15.1. Introduction -- 15.2. Properties of SPCE -- 15.3. Current Developments of SPCE in Bioanalysis -- 15.3.1. New Substrates Designing for Biochip -- 15.3.2. Optical Switch for Biosensing -- 15.3.3. Full-Coupling Effect for Bioapplication -- 15.3.4. Hot-Spot Nanostructure-Based Biosensor -- 15.3.5. Imaging Apparatus for High-Throughput Detection -- 15.3.6. Waveguide Mode SPCE to Widen Detection Region -- 15.4. Perspectives -- 16. Plasmon-Enhanced Luminescence with Shell-Isolated Nanoparticles / Ricardo F
Aroca -- 16.1. Introduction -- 16.2. Synthesis of Shell-Isolated Nanoparticles -- 16.2.1. Nanosphere Au-SHINs -- 16.2.2. Nanorod Au-SHINs -- 16.3. Plasmon-Enhanced Luminescence in Liquid Media -- 16.4. Enhanced Luminescence on Solid Surfaces and Spectral Profile Modification -- 16.4.1. SHINEF on Langmuir-Blodgett Films -- 17. Controlled and Enhanced Fluorescence Using Plasmonic Nanocavities / Maiken H. Mikkelsen -- 17.1. Introduction to Plasmonic Nanocavities -- 17.2. Summary of Fabrication -- 17.3. Properties of the Nanocavity -- 17.3.1. Nanocavity Resonances -- 17.3.2. Tuning the Resonance -- 17.3.3. Directional Scattering and Emission -- 17.4. Theory of Emitters Coupled to Nanocavity -- 17.4.1. Simulation of Nanocavity -- 17.4.2. Enhancement in the Spontaneous Emission Rate -- 17.5. Absorption Enhancement -- 17.6. Purcell Enhancement -- 17.7. Ultrafast Spontaneous Emission -- 17.8. Harnessing Multiple Resonances for Fluorescence Enhancement -- 17.9. Conclusions and Outlook -- 18. Plasmonic Enhancement of UV Fluorescence / Steve Blair -- 18.1. Introduction -- 18.2. Plasmonic Enhancement -- 18.3. Analytical Description of PE of Fluorescence -- 18.4. Overview of Research on Plasmon-Enhanced UV Fluorescence -- 18.4.1. Material Selection -- 18.4.2. Structure Choice -- 18.4.3. Experimental Measurement -- 18.4.3.1. Characterization of SPR Properties -- 18.4.3.2. Fluorescence Enhancement -- 18.4.3.3. Lifetime Measurement -- 18.4.3.4. Toward Quantitative Florescence Analysis -- 18.5. Summary
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Fluorescence spectroscopy.
Fluorescence.
Plasmons (Physics)
Surface plasmon resonance.
Form Electronic book
Author Geddes, Chris D., editor
ISBN 1119325161 (electronic bk.)
1119325897 (electronic bk.)
9781119325161 (electronic bk.)
9781119325895 (electronic bk.)
(epub)