Limit search to available items
Book Cover
E-book
Author Pardo, Lorena.

Title Multifunctional polycrystalline ferroelectric materials : processing and properties / Lorena Pardo, Jesús Ricote
Published Dordrecht ; New York : Springer, ©2011

Copies

Description 1 online resource (xxiii, 782 pages) : illustrations (some color)
Series Springer series in materials science ; 140
Springer series in materials science ; 140.
Contents Machine generated contents note: 1. Advances in Processing of Bulk Ferroelectric Materials / Carmen Galassi -- 1.1. Introduction -- 1.2. Ferroelectric Materials -- 1.2.1. Perovskite Type Materials -- 1.2.2. Aurivillius Ceramics -- 1.2.3. Tungsten Bronze Ceramics -- 1.2.4. Pyrochlore -- 1.2.5. Multiferroics -- 1.3. Powder Synthesis -- 1.3.1. Solid State Reaction (SSR) -- 1.3.2. Mechanochemical Synthesis -- 1.3.3. Chemical Methods -- 1.4. Colloidal Processing -- 1.4.1. Slurry Formulation -- 1.4.2. Suspension-Based Shaping Techniques -- 1.5. Templated Grain Growth -- 1.6. Conclusions -- References -- 2. Processing of Ferroelectric Ceramic Thick Films / Janez Hole -- 2.1. Introduction -- 2.2. Processing of Thick Films -- 2.2.1. Processing of the Powder -- 2.2.2. Shaping Methods -- 2.2.3. Densification of Thick Films -- 2.3
Note continued: 4. Ferroelectrics onto Substrates Prepared by Chemical Solution Deposition: From the Thin Film to the Self-Assembled Nano-sized Structures / M.L. Calzada -- 4.1. Introduction -- 4.2. Chemical Solution Deposition (CSD) of Ferroelectric Materials -- 4.3. Tailoring the Chemistry of the Precursor Solutions -- 4.3.1. Control of the Hydrolysis of the Solutions -- 4.3.2. Solution Homogeneity and its Effect on the Properties of the Films -- 4.3.3. Effect of the Chemical Reagents Used for the Preparation of the Precursor Solutions -- 4.3.4. Stoichiometry of the Precursor Solution -- 4.3.5. Photo-Activation of the Precursor Solutions -- 4.3.6. Adding Special Compounds to the Precursor Solutions -- 4.4. Tailoring the Conversion of the Solution Deposited Layer into a Ferroelectric Crystalline Thin Film -- 4.4.1. Effect of the Substrate during the Heat Treatment -- 4.4.2. Firing Atmosphere -- 4.4.3. Conventional Heating versus Rapid Heating -- 4.4.4. Two Step Heating versus Single Step Heating -- 4.4.5. UV-Assisted Rapid Thermal Processing -- 4.5. Scaling down the Ferroelectric Thin Film -- 4.5.1. Ultra-Thin Films -- 4.5.2. Self-Assembled Isolated Nanostructures -- 4.6. Final Remark -- Acknowledgments -- References -- 5. Approaches Towards the Minimisation of Toxicity in Chemical Solution Deposition Processes of Lead-Based Ferroelectric Thin Films / M. Lourdes Calzada -- Abstract -- 5.1. Introduction -- 5.2. Photochemical Solution Deposition as a Reliable Method to Avoid Lead Volatilisation during Low-Temperature Processing of Ferroelectric Thin Films -- 5.2.1. UV Sol-Gel Photoannealing Technique -- 5.2.2. Photosensitivity of Precursor Solutions -- 5.2.3. UV-Assisted Rapid Thermal Processor: Enabling Photo-Excitation and Ozonolysis on the Films -- 5.2.4. Particular Features of the Low-Temperature Processed Films by UV Sol-Gel Photoannealing
Note continued: 5.2.5. Nominally Stoichiometric Solution-Derived Lead-Based Ferroelectric Films: Avoiding the PbO-Excess Addition at Last -- 5.2.6. Remarks -- 5.3. Soft Solution Chemistry of Ferroelectric Thin Films -- 5.3.1. Chemical Solution Deposition Methods -- 5.3.2. Aqueous Solution Route -- 5.3.3. Diol-Based Sol-Gel Route -- 5.3.4. Remarks -- 5.4. Summary -- Acknowledgments -- References -- 6. Synchrotron Radiation Diffraction and Scattering in Ferroelectrics / Luis E. Fuentes-Cobas -- 6.1. Synchrotron Radiation -- 6.2. X-Ray Diffraction and Scattering: Fundamentals -- 6.2.1. Bragg Law, Reciprocal Lattice and Ewald Representation -- 6.2.2. Diffraction Peaks -- 6.2.3. Diffuse Scattering -- 6.3. Powder Diffractometry: Techniques and Applications -- 6.3.1. Diffraction by a Polycrystalline Sample in a Synchrotron Facility. Resolving Power -- 6.3.2. Rietveld Method: Basic Ideas, Formulae and Software -- 6.3.3. Ferroelectric Applications -- 6.3.4. Phase and Texture Identification in Thin Films -- 6.4. Diffuse Scattering: Techniques and Applications -- 6.4.1. Pair Distribution Function -- 6.4.2. Reciprocal Space Maps -- 6.4.3. Diffuse Scattering in the Vicinity of Bragg Peaks -- 6.4.4. Crystal Truncation Rods -- 6.4.5. Diffuse Scattering Sheets -- 6.5. Closing Comments -- Acknowledgments -- References -- 7. X-Ray Absorption Fine Structure Applied to Ferroelectrics / Maria Elena Montero Cabrera -- Abstract -- 7.1. Introduction: X-Ray Absorption Fine Structure -- 7.2. X-Rays Absorption in Materials -- 7.2.1. X-Rays Absorption -- 7.2.2. X-Rays Absorption Edges -- 7.3. Basic Ideas on XAFS -- 7.3.1. EXAFS Function -- 7.4. X-Ray Absorption near Edge Structure -- XANES -- 7.4.1. XANES Zone: Photoelectron Multiple Scattering and Allowed Transitions -- 7.4.2. Edge Energy Position -- 7.4.3. Pre-Edge Transitions -- 7.4.4. White-Lines
Note continued: 7.5. Formal Characterization of XAFS -- 7.5.1. EXAFS Equation -- 7.5.2. One-Electron Golden Rule Approximation -- 7.5.3. Fluctuations in Interatomic Distances and the Debye-Waller Factor -- 7.5.4. Curved Waves and Multiple Scattering of Photoelectrons -- 7.5.5. Inelastic Scattering -- 7.6. Experimental Methods in XAFS -- 7.6.1. Measurement Modes: Transmission, Fluorescence and Total Electron Yield -- 7.7. Data Reduction -- 7.7.1. Steps for Obtaining XAFS Experimental Function -- 7.8. XAFS Data Analysis -- 7.8.1. Empirical Methods of Data Analysis -- 7.8.2. Theoretical Models for Data Analysis -- 7.9. XAFS Applied to Ferroelectrics -- 7.9.1. Pioneering Works on Order-Disorder or Displacive Character of Ferroelectric Materials -- 7.9.2. Applying XANES Fingerprints for Identification and EXAFS for Structures -- 7.9.3. XAFS for Studying Relaxor Behaviour of Ferroelectrics -- ̂ 7.9.4. XAFS for Studying Aurivillius Phases -- 7.9.5. Concluding Remarks: Comparing Information from XAFS and X-Ray Diffraction and Scattering -- Acknowledgments -- References -- 8. Quantitative Texture Analysis of Polycrystalline Ferroelectrics / J. Ricote -- 8.1. Introduction -- 8.2. Conventional Texture Analysis -- 8.2.1. Qualitative Determination of Texture from Conventional Diffraction Diagrams -- 8.2.2. Quantitative Approach: The Lotgering Factor -- 8.2.3. Approaches to Texture Characterization Based on Rietveld Analysis -- 8.2.4. Representations of Textures: Pole Figures -- 8.3. Quantitative Texture Analysis -- 8.3.1. Calculation of the Orientation Distribution Function -- 8.3.2. OD Texture Strength Factors -- 8.3.3. Estimation of the Elastic Properties of Polycrystals Using the Orientation Distributions -- 8.4. Combined Analysis -- 8.4.1. Experimental Requirements for a Combined Analysis of Diffraction Data
Note continued: 8.4.2. Example of the Application of the Combined Analysis to the Study of a Ferroelectric Thin Film -- 8.5. Texture of Polycrystalline Ferroelectric Films -- 8.5.1. Substrate Induced Texture Variations -- 8.5.2. Influence of the Processing Parameters on the Development of Texture in Thin Films -- Final Remarks -- Acknowledgements -- References -- 9. Nanoscale Investigation of Polycrystalline Ferroelectric Materials via Piezoresponse Force Microscopy / A.L. Kholkin -- 9.1. Introduction -- 9.2. Principle of Piezoresponse Force Microscopy -- 9.2.1. Experimental Setup -- 9.2.2. Electromechanical Contribution -- 9.2.3. Electrostatic Contribution -- 9.2.4. Resolution in PFM Experiments -- 9.3. PFM in Polycrystalline Materials. Effect of Microstructure, Texture, Composition -- 9.4. Local Polarization Switching by PFM -- 9.4.1. Thermodynamics of PFM Tip-Induced Polarization Reversal -- 9.4.2. Domain Dynamics Studied by PFM -- 9.4.3. Local Piezoelectric Hysteresis Loops -- 9.4.4. Anomalous Polarization Switching -- 9.4.5. Polarization Retention Loss (Aging) in PFM Experiments -- 9.5. Polarization Switching by a Mechanical Stress -- 9.6. Investigation of Polarization Fatigue by PFM -- 9.7. Investigation of Relaxor Ferroelectrics by PFM -- 9.8. Size Effect and Search for the Ferroelectricity Limit -- Conclusions -- References -- 10. Mechanical Properties of Ferro-Piezoceramics / Ilona Westram -- 10.1. Introduction -- 10.2. Electromechanical Hysteresis, Experiment -- 10.2.1. Introduction to Hysteresis -- 10.2.2. Electromechanical Coupling in Single Crystals -- 10.2.3. Time Effects -- 10.2.4. Electromechanical Coupling in Polycrystalline Materials -- 10.3. Electromechanical Hysteresis, Modelling -- 10.3.1. Models of Hysteresis -- 10.3.2. Homogenization -- 10.4. Mechanical Failure -- 10.4.1. Crack Origins in Devices
Note continued: 12.5.1. Special (Emerging) Applications -- References -- 13. Properties of Ferro-Piezoelectric Ceramic Materials in the Linear Range: Determination from Impedance Measurements at Resonance / K. Brebøl -- Abstract -- 13.1. Resonance Method in the Determination of the Properties of Ferro-Piezoelectric Ceramics in the Linear Range -- 13.1.1. Properties of Ferro-Piezoelectric Ceramics -- 13.1.2. Resonance Method -- 13.1.3. Iterative Methods in the Complex Characterization of Piezoceramics -- 13.1.4. Iterative Automatic Method Developed / C. Alemany -- 13.2. Complementary use of Finite Element Analysis and Laser Interferometry to the Characterization of Piezoceramics from Impedance Measurements at Resonance -- 13.2.1. Finite Element Analysis for the Matrix Characterization of Piezoceramics -- 13.2.2. Analysis of Shear Modes by Laser Interferometry -- 13.3. Matrix Characterization of Piezoceramics -- 13.3.1. State of the Art of the Matrix Characterization of Bulk Piezoceramics -- 13.3.2. Matrix Characterization of Piezoceramics from Resonance Using Alemany et al. Method and Thickness-Poled Shear Samples -- Summary -- Acknowledgements -- References -- 14. Domain Engineered Piezoelectric Resonators / Jiff Erhart -- 14.1. Introduction -- 14.2. Domain Structures -- 14.3. Domain Engineering for Piezoelectric Resonators -- 14.4. Twin-Domain Piezoelectric Ceramics Resonators -- 14.4.1. Length-Extensional Modes of Thin Bars -- 14.4.2. Thickness-Extensional Mode of Thin Plate -- 14.4.3. Thickness-Shear Mode of Thin Plate -- 14.4.4. Contour-Extensional Mode of Thin Disc -- 14.5. Domain Engineered Piezoelectric Transformer -- 14.6. Conclusions -- Acknowledgements -- References -- 15. Non-Linear Behaviour of Piezoelectric Ceramics / Rafel Perez -- 15.1. Introduction -- 15.1.1. Methods for Non-Linear Characterization
Note continued: 15.2. Dielectric and Converse Piezoelectric Behaviour -- 15.2.1. Experimental Method -- 15.2.2. Results Obtained -- 15.2.3. Anisotropy -- 15.3. Direct Piezoelectric Behaviour -- 15.3.1. Measurement of the Direct Effect -- 15.3.2. Experimental Method -- 15.3.3. Results -- 15.4. Resonance Measurements -- 15.4.1. Resonance at High-Level: Measurement Methods -- 15.4.2. Burst Measurements -- 15.4.3. Non-Linear Elastic Characterization -- 15.4.4. Elastic Non-Linear Behaviour -- 15.5. Phenomenological Models -- 15.5.1. Theoretical Considerations -- 15.5.2. Considerations about the Non-Linear Behaviour -- 15.5.3. On the Domain Structure -- 15.5.4. On the Role of the Dopants -- References -- 16. Piezoelectric Transducers for Structural Health Monitoring: Modelling and Imaging / Francisco Montero de Espinosa Freijo -- 16.1. Introduction -- 16.2. Lamb Wave Dispersion Curves -- 16.2.1. Experimental Dispersion Curves -- 16.3. Design, Manufacture and Installation of a Flexible Linear Array -- 16.3.1. Study of the Diffraction Pattern of Piezoceramic Elements Attached to Aluminium Plates -- 16.3.2. Characterization of the Array -- 16.3.3. Installation of the Flexible Array and Defect Detection -- 16.4. Study of Crosstalk Reduction in Linear Piezoelectric Arrays for Imaging in Structural Health Monitoring Applications -- 16.4.1. Reactive Effect of the Plate Border -- 16.4.2. Crosstalk Reduction Using Piezocomposites -- 16.5. Conclusions -- References
Summary This book presents selected topics on processing and properties of ferroelectric materials that are currently the focus of attention in scientific and technical research. Ferro-piezoelectric ceramics are key materials in devices for many applications, such as automotive, healthcare and non-destructive testing. As they are polycrystalline, non-centrosymmetric materials, their piezoelectricity is induced by the so-called poling process. This is based on the principle of polarization reversal by the action of an electric field that characterizes the ferroelectric materials. This book was born with the aim of increasing the awareness of the multifunctionality of ferroelectric materials among different communities, such as researchers, electronic engineers, end-users and manufacturers, working on and with ferro-piezoelectric ceramic materials and devices which are based on them. The initiative to write this book comes from a well-established group of researchers at the Laboratories of Ferroelectric Materials, Materials Science Institute of Madrid (ICMM-CSIC). This group has been working in different areas concerning thin films and bulk ceramic materials since the mid-1980s. It is a partner of the Network of Excellence on Multifunctional and Integrated Piezoelectric Devices (MIND) of the EC, in which the European Institute of Piezoelectric Materials and Devices has its origin
Analysis materialen
materials
magnetisme
magnetism
elektronica
electronics
instrumentatie
instrumentation
optische instrumenten
optical instruments
materiaalkunde
materials science
optica
optics
Engineering (General)
Techniek (algemeen)
Bibliography Includes bibliographical references and index
Notes Print version record
In Springer eBooks
Subject Ferroelectric crystals.
Ferroelectric devices.
SCIENCE -- Physics -- Crystallography.
Physique.
Astronomie.
Ferroelectric crystals
Ferroelectric devices
Form Electronic book
Author Ricote, Jesús.
ISBN 9789048128754
9048128757
9048128749
9789048128747