Limit search to available items
Book Cover
E-book
Author Patterson, James D. (James Deane), 1934-

Title Solid-state physics : introduction to the theory / James Patterson, Bernard Bailey
Edition 2nd ed
Published Berlin ; London : Springer, ©2010

Copies

Description 1 online resource (xxi, 827 pages)
Contents Note continued: 3.1. Reduction to One-Electron Problem -- 3.1.1. Variational Principle (B) -- 3.1.2. Hartree Approximation (B) -- 3.1.3. Hartree-Fock Approximation (A) -- 3.1.4. Coulomb Correlations and the Many-Electron Problem (A) -- 3.1.5. Density Functional Approximation (A) -- 3.2. One-Electron Models -- 3.2.1. Kronig-Penney Model (B) -- 3.2.2. Free-Electron or Quasifree-Electron Approximation (B) -- 3.2.3. Problem of One Electron in a Three-Dimensional Periodic Potential -- 3.2.4. Effect of Lattice Defects on Electronic States in Crystals (A) -- Problems -- 4. Interaction of Electrons and Lattice Vibrations -- 4.1. Particles and Interactions of Solid-state Physics (B) -- 4.2. Phonon-Phonon Interaction (B) -- 4.2.1. Anharmonic Terms in the Hamiltonian (B) -- 4.2.2. Normal and Umklapp Processes (B) -- 4.2.3. Comment on Thermal Conductivity (B) -- 4.2.4. Phononics (EE) -- 4.3. Electron-Phonon Interaction -- 4.3.1. Form of the Hamiltonian (B) -- 4.3.2. Rigid-Ion Approximation (B) -- 4.3.3. Polaron as a Prototype Quasiparticle (A) -- 4.4. Brief Comments on Electron-Electron Interactions (B) -- 4.5. Boltzmann Equation and Electrical Conductivity -- 4.5.1. Derivation of the Boltzmann Differential Equation (B) -- 4.5.2. Motivation for Solving the Boltzmann Differential Equation (B) -- 4.5.3. Scattering Processes and Q Details (B) -- 4.5.4. Relaxation-Time Approximate Solution of the Boltzmann Equation for Metals (B) -- 4.6. Transport Coefficients -- 4.6.1. Electrical Conductivity (B) -- 4.6.2. Peltier Coefficient (B) -- 4.6.3. Thermal Conductivity (B) -- 4.6.4. Thermoelectric Power (B) -- 4.6.5. Kelvin's Theorem (B) -- 4.6.6. Transport and Material Properties in Composites (MET, MS) -- Problems -- 5. Metals, Alloys, and the Fermi Surface -- 5.1. Fermi Surface (B) -- 5.1.1. Empty Lattice (B) -- 5.1.2. Exercises (B)
Note continued: 5.2. Fermi Surface in Real Metals (B) -- 5.2.1. Alkali Metals (B) -- 5.2.2. Hydrogen Metal (B) -- 5.2.3. Alkaline Earth Metals (B) -- 5.2.4. Noble Metals (B) -- 5.3. Experiments Related to the Fermi Surface (B) -- 5.4. de Haas-van Alphen effect (B) -- 5.5. Eutectics (MS, ME) -- 5.6. Peierls Instability of Linear Metals (B) -- 5.6.1. Relation to Charge Density Waves (A) -- 5.6.2. Spin Density Waves (A) -- 5.7. Heavy Fermion Systems (A) -- 5.8. Electromigration (EE, MS) -- 5.9. White Dwarfs and Chandrasekhar's Limit (A) -- 5.9.1. Gravitational Self-Energy (A) -- 5.9.2. Idealized Model of a White Dwarf (A) -- 5.10. Some Famous Metals and Alloys (B. MET) -- Problems -- 6. Semiconductors -- 6.1. Electron Motion -- 6.1.1. Calculation of Electron and Hole Concentration (B) -- 6.1.2. Equation of Motion of Electrons in Energy Bands (B) -- 6.1.3. Concept of Hole Conduction (B) -- 6.1.4. Conductivity and Mobility in Semiconductors (B) -- 6.1.5. Drift of Carriers in Electric and Magnetic Fields: The Hall Effect (B) -- 6.1.6. Cyclotron Resonance (A) -- 6.2. Examples of Semiconductors -- 6.2.1. Models of Band Structure for Si, Ge and II-VI and III-V Materials (A) -- 6.2.2. Comments about GaN (A) -- 6.3. Semiconductor Device Physics -- 6.3.1. Crystal Growth of Semiconductors (EE, MET, MS) -- 6.3.2. Gunn Effect (EE) -- 6.3.3. pn-Junctions (EE) -- 6.3.4. Depletion Width, Varactors, and Graded Junctions (EE) -- 6.3.5. Metal Semiconductor Junctions -- the Schottky Barrier (EE) -- 6.3.6. Semiconductor Surface States and Passivation (EE) -- 6.3.7. Surfaces Under Bias Voltage (EE) -- 6.3.8. Inhomogeneous Semiconductors Not in Equilibrium (EE) -- 6.3.9. Solar Cells (EE) -- 6.3.10. Transistors (EE) -- 6.3.11. Charge-Coupled Devices (CCD) (EE) -- Problems -- 7. Magnetism, Magnons, and Magnetic Resonance
Note continued: 7.1. Types of Magnetism -- 7.1.1. Diamagnetism of the Core Electrons (B) -- 7.1.2. Paramagnetism of Valence Electrons (B) -- 7.1.3. Ordered Magnetic Systems (B) -- 7.2. Origin and Consequences of Magnetic Order -- 7.2.1. Heisenberg Hamiltonian -- 7.2.2. Magnetic Anisotropy and Magnetostatic Interactions (A) -- 7.2.3. Spin Waves and Magnons (B) -- 7.2.4. Band Ferromagnetism (B) -- 7.2.5. Magnetic Phase Transitions (A) -- 7.3. Magnetic Domains and Magnetic Materials (B) -- 7.3.1. Origin of Domains and General Comments (B) -- 7.3.2. Magnetic Materials (EE, MS) -- 7.3.3. Nanomagnetism (EE, MS) -- 7.4. Magnetic Resonance and Crystal Field Theory -- 7.4.1. Simple Ideas About Magnetic Resonance (B) -- 7.4.2. Classical Picture of Resonance (B) -- 7.4.3. Bloch Equations and Magnetic Resonance (B) -- 7.4.4. Crystal Field Theory and Related Topics (B) -- 7.5. Brief Mention of Other Topics -- 7.5.1. Spintronics or Magnetoelectronics (EE) -- 7.5.2. Kondo Effect (A) -- 7.5.3. Spin Glass (A) -- 7.5.4. Solitons (A, EE) -- Problems -- 8. Superconductivity -- 8.1. Introduction and Some Experiments (B) -- 8.1.1. Ultrasonic Attenuation (B) -- 8.1.2. Electron Tunneling (B) -- 8.1.3. Infrared Absorption (B) -- 8.1.4. Flux Quantization (B) -- 8.1.5. Nuclear Spin Relaxation (B) -- 8.1.6. Thermal Conductivity (B) -- 8.2. London and Ginzburg-Landau Equations (B) -- 8.2.1. Coherence Length (B) -- 8.2.2. Flux Quantization and Fluxoids (B) -- 8.2.3. Order of Magnitude for Coherence Length (B) -- 8.3. Tunneling (B, EE) -- 8.3.1. Single-Particle or Giaever Tunneling -- 8.3.2. Josephson Junction Tunneling -- 8.4. SQUID: Superconducting Quantum Interference (EE) -- 8.4.1. Questions and Answers (B) -- 8.5. Theory of Superconductivity (A) -- 8.5.1. Assumed Second Quantized Hamiltonian for Electrons and Phonons in Interaction (A)
Note continued: 8.5.2. Elimination of Phonon Variables and Separation of Electron-Electron Attraction Term Due to Virtual Exchange of Phonons (A) -- 8.5.3. Cooper Pairs and the BCS Hamiltonian (A) -- 8.5.4. Remarks on the Nambu Formalism and Strong Coupling Superconductivity (A) -- 8.6. Magnesium Diboride (EE, MS, MET) -- 8.7. Heavy-Electron Superconductors (EE, MS, MET) -- 8.8. High-Temperature Superconductors (EE, MS, MET) -- 8.9. Summary Comments on Superconductivity (B) -- Problems -- 9. Dielectrics and Ferroelectrics -- 9.1. Four Types of Dielectric Behavior (B) -- 9.2. Electronic Polarization and the Dielectric Constant (B) -- 9.3. Ferroelectric Crystals (B) -- 9.3.1. Thermodynamics of Ferroelectricity by Landau Theory (B) -- 9.3.2. Further Comment on the Ferroelectric Transition (B, ME) -- 9.3.3. One-Dimensional Model of the Soft Mode of Ferroelectric Transitions (A) -- 9.4. Dielectric Screening and Plasma Oscillations (B) -- 9.4.1. Helicons (EE) -- 9.4.2. Alfven Waves (EE) -- 9.4.3. Plasmonics (EE) -- 9.5. Free-Electron Screening -- 9.5.1. Introduction (B) -- 9.5.2. Thomas-Fermi and Debye-Huckel Methods (A, EE) -- 9.5.3. Lindhard Theory of Screening (A) -- Problems -- 10. Optical Properties of Solids -- 10.1. Introduction (B) -- 10.2. Macroscopic Properties (B) -- 10.2.1. Kronig-Kramers Relations (A) -- 10.3. Absorption of Electromagnetic Radiation-General (B) -- 10.4. Direct and Indirect Absorption Coefficients (B) -- 10.5. Oscillator Strengths and Sum Rules (A) -- 10.6. Critical Points and Joint Density of States (A) -- 10.7. Exciton Absorption (A) -- 10.8. Imperfections (B, MS, MET) -- 10.9. Optical Properties of Metals (B, EE, MS) -- 10.10. Lattice Absorption, Restrahlen, and Polaritons (B) -- 10.10.1. General Results (A) -- 10.10.2. Summary of the Properties of & epsilon;(q, & omega;) (B)
Note continued: 10.10.3. Summary of Absorption Processes: General Equations (B) -- 10.11. Optical Emission, Optical Scattering and Photoemission (B) -- 10.11.1. Emission (B) -- 10.11.2. Einstein A and B Coefficients (B, EE, MS) -- 10.11.3. Raman and Brillouin Scattering (B, MS) -- 10.11.4. Optical Lattices (A, B) -- 10.11.5. Photonics (EE) -- 10.11.6. Negative Index of Refraction (EE) -- 10.12. Magneto-Optic Effects: The Faraday Effect (B, EE, MS) -- Problems -- 11. Defects in Solids -- 11.1. Summary About Important Defects (B) -- 11.2. Shallow and Deep Impurity Levels in Semiconductors (EE) -- 11.3. Effective Mass Theory, Shallow Defects, and Superlattices (A) -- 11.3.1. Envelope Functions (A) -- 11.3.2. First Approximation (A) -- 11.3.3. Second Approximation (A) -- 11.4. Color Centers (B) -- 11.5. Diffusion (MET, MS) -- 11.6. Edge and Screw Dislocation (MET, MS) -- 11.7. Thermionic Emission (B) -- 11.8. Cold-Field Emission (B) -- 11.9. Microgravity (MS) -- Problems -- 12. Current Topics in Solid Condensed-Matter Physics -- 12.1. Surface Reconstruction (MET, MS) -- 12.2. Some Surface Characterization Techniques (MET, MS, EE) -- 12.3. Molecular Beam Epitaxy (MET, MS) -- 12.4. Heterostructures and Quantum Wells -- 12.5. Quantum Structures and Single-Electron Devices (EE) -- 12.5.1. Coulomb Blockade (EE) -- 12.5.2. Tunneling and the Landauer Equation (EE) -- 12.6. Superlattices, Bloch Oscillators, Stark-Wannier Ladders -- 12.6.1. Applications of Superlattices and Related Nanostructures (EE) -- 12.7. Classical and Quantum Hall Effect (A) -- 12.7.1. Classical Hall Effect -- CHE (A) -- 12.7.2. Quantum Mechanics of Electrons in a Magnetic Field: The Landau Gauge (A) -- 12.7.3. Quantum Hall Effect: General Comments (A) -- 12.8. Carbon -- Nanotubes and Fullerene Nanotechnology (EE) -- 12.9. Amorphous Semiconductors and the Mobility Edge (EE)
Note continued: 12.9.1. Hopping Conductivity (EE) -- 12.10. Amorphous Magnets (MET, MS) -- 12.11. Soft Condensed Matter (MET, MS) -- 12.11.1. General Comments -- 12.11.2. Liquid Crystals (MET, MS) -- 12.11.3. Polymers and Rubbers (MET, MS) -- Problems -- Appendices -- A. Units -- B. Normal Coordinates -- C. Derivations of Bloch's Theorem -- C.1. Simple One-Dimensional Derivation -- C.2. Simple Derivation in Three Dimensions -- C.3. Derivation of Bloch's Theorem by Group Theory -- D. Density Matrices and Thermodynamics -- E. Time-Dependent Perturbation Theory -- F. Derivation of The Spin-Orbit Term From Dirac's Equation -- G. Second Quantization Notation for Fermions and Bosons -- G.1. Bose Particles -- G.2. Fermi Particles -- H. Many-Body Problem -- H.1. Propagators -- H.2. Green Functions -- H.3. Feynman Diagrams -- H.4. Definitions -- H.5. Diagrams and the Hartree and Hartree-Fock Approximations -- H.6. Dyson Equation -- I. Brief Summary of Solid-State Physics -- J. Folk Theorems -- K. Handy Mathematical Results -- L. Condensed Matter Nobel Prize Winners (in Physics or Chemistry) -- M. Problem Solutions -- M.1. Chapter 1 Solutions -- M.2. Chapter 2 Solutions -- M.3. Chapter 3 Solutions -- M.4. Chapter 4 Solutions -- M.5. Chapter 5 Solutions -- M.6. Chapter 6 Solutions -- M.7. Chapter 7 Solutions -- M.8. Chapter 8 Solutions -- M.9. Chapter 9 Solutions -- M.10. Chapter 10 Solutions -- M.11. Chapter 11 Solutions -- M.12. Chapter 12 Solutions -- M.13. Appendix B Solutions -- Bibliography -- Chapter 1 -- Chapter 2 -- Chapter 3 -- Chapter 4 -- Chapter 5 -- Chapter 6 -- Chapter 7 -- Chapter 8 -- Chapter 9 -- Chapter 10 -- Chapter 11 -- Chapter 12
Summary Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid Modern solid state physics came of age in the late thirties and forties and is now is part of condensed matter physics which includes liquids, soft materials, and non-crystalline solids. This solid state/condensed matter physics book begins with three broad areas: (1) How and why atoms bind together to form solids, (2) Lattice vibrations and phonons, and (3) Electrons in solids. It then applies these areas to (4) Interactions especially of electrons with phonons, (5) Metals, the Fermi surface and alloys, (6) Semiconductors, (7) Magnetism, (8) Superconductivity, (9) Dielectrics and ferroelectrics, (10) Optical properties, (11) Defects, and (12) Certain other modern topics such as layered materials, quantum Hall effect, mesoscopics, nanophysics, and soft condensed matter. For this 2nd addition new material has been added on the evolution of BEC to BCS phenomena, conducting polymers, graphene, highly correlated electrons, iron pnictide superconductors, light emitting diodes, N-V centers, nanomagnetism, negative index of refraction, optical lattices, phase transitions, phononics, photonics, plasmonics, quantum computing, solar cells, spin Hall effect, and spintronics. The major addition to this 2nd edition is an extensive solutions manual, in which all the text problems are discussed. The problems in our book cover a wide range of difficulty. The solutions in this manual are expected to show what we expect to get out of the problems. In the manual, we have also included a brief summary of solid state physics which should help you get focused on problem solving. We have also included "folk theorems" to remind about the essence of the physics without the mathematics
Analysis fysica
physics
biofysica
biophysics
spectroscopie
spectroscopy
microscopie
microscopy
elektronica
electronics
instrumentatie
instrumentation
optische instrumenten
optical instruments
optica
optics
Physics (General)
Fysica (algemeen)
Bibliography Includes bibliographical references (pages 783-812) and index
Notes Print version record
Subject Solid state physics.
Physique.
Solid state physics
Form Electronic book
Author Bailey, Bernard.
Patterson, James D. (James Deane), 1934-
ISBN 9783642025891
3642025897
9783642025884
3642025889