Limit search to available items
Book Cover
E-book
Author Sirohi, R. S

Title Introduction to optical metrology / Rajpal S. Sirohi, Tezpur University, India
Published Boca Raton : CRC Press, Taylor & Francis Group, [2016]

Copies

Description 1 online resource : text file, PDF
Series Optical sciences and applications of light
Optical sciences and applications of light.
Contents Machine generated contents note: 1.1. Introduction -- 1.2. Law of Reflection -- 1.3. Law of Refraction -- 1.4. Interference -- 1.5. Diffraction -- 1.5.1. Propagation of a Monochromatic Wave -- 1.5.2. Kirchhoff Theory of Diffraction -- 1.5.3. Small Angle Approximation -- 1.5.4. Fresnel Approximation -- 1.5.5. Fraunhofer Approximation -- 1.6. Polarization -- 1.6.1. Polarization Ellipse -- 1.6.2. Representation of Polarization -- 1.6.2.1. Jones Vector -- 1.6.2.2. Stokes Vector -- 1.7. Fresnel Equations -- 1.8. Thin Film Optics -- 1.9. Optical Components -- 1.9.1. Reflective Components -- 1.9.1.1. Mirror -- 1.9.2. Refractive Components -- 1.9.2.1. Refraction at Dielectric Interface -- 1.9.3. Diffractive Components -- 1.10. Refraction at Curved Interface -- 1.10.1. Lenses -- 1.11. Paraxial Optics -- 1.11.1. Translation Matrix -- 1.11.2. Refraction Matrix -- 1.11.2.1. Plane Dielectric Interface -- 1.11.2.2. Spherical Dielectric Interface -- 1.11.3. Matrix for a Thin Lens -- Problems -- 2.1. Gaussian Beams -- 2.2. The ABCD Law for Gaussian Beams -- 2.2.1. Free Space Propagation -- 2.2.2. Propagation through a Lens -- 2.2.2.1. Beam Waist Lies at Plane 1 at the Lens -- 2.2.2.2. Beam Waist Lies in Front of the Lens -- 2.2.2.3. Beam Focusing -- 2.3. Laser Collimator -- 2.4. Vortex Beams -- 2.5. Bessel Beams -- Problems -- 3.1. Introduction -- 3.2. Radiometric Units -- 3.3. Blackbody -- 3.4. Light Sources -- 3.4.1. Incandescent Tungsten Lamps -- 3.4.2. Tungsten-Halogen Lamps -- 3.4.3. Discharge Lamps -- 3.4.4. Coherent Sources -- 3.4.4.1. Helium-Neon Laser -- 3.4.4.2. Argon Ion Laser -- 3.4.4.3. Nd:YAG/Nd:Glass Laser -- 3.4.4.4. Semiconductor Lasers -- 3.5. Detectors -- 3.5.1. Eye -- 3.5.2. Photoelectric Detectors -- 3.5.2.1. Photoemis sive Detectors -- 3.5.2.2. Photomultipliers -- 3.5.2.3. Photoconductive Detectors -- 3.5.2.4. Photovoltaic Detectors -- 3.5.2.5. Avalanche Photodiode -- 3.5.3. Thermal Detectors -- 3.6. Recording Media -- 3.6.1. Photographic/Holographic Plates and Films -- 3.6.2. Dichromated Gelatin -- 3.6.3. Photoresists -- 3.6.4. Photopolymers -- 3.6.5. Thermoplastics -- 3.6.6. Photochromics -- 3.6.7. Ferroelectric Crystals -- 3.7. Image Detectors -- 3.7.1. Time Delay and Integration Mode of Operation -- 3.8. Spatial Light Modulators -- Problems -- 4.1. Introduction -- 4.2. Early History -- 4.2.1. Arrival of Laser -- 4.3. Generation of Coherent Waves/Sources -- 4.3.1. Wave Front Division: Double-Slit Experiment -- 4.3.2. Amplitude Division: Plane Parallel Plate -- 4.4. Fringe Patterns -- 4.4.1. Interference between Two Plane Waves -- 4.4.2. Interference between Two Plane Waves of Slightly Different Frequencies -- 4.5. Some More Interferometers -- 4.5.1. Two-Frequency Interferometer -- 4.5.2. Doppler Interferometer -- 4.5.3. Cyclic Interferometer -- 4.5.4. Shear Interferometer -- 4.6. Phase Shifting -- 4.6.1. Temporal Phase Shifting -- 4.6.2. Spatial Phase Shifting -- Problems -- 5.1. Holography and Hologram Interferometry -- 5.1.1. Hologram Recording -- 5.1.2. Reconstruction -- 5.1.3. In-Line Holography -- 5.1.4. Off-Axis Holography -- 5.1.4.1. Choice of Angle of the Reference Wave -- 5.1.4.2. Choice of Intensity of the Reference Wave -- 5.1.5. Types of Holograms -- 5.1.5.1. Diffraction Efficiency -- 5.1.6. Experimental Arrangement -- 5.1.6.1. Lasers -- 5.1.6.2. Beam Splitters -- 5.1.6.3. Beam Expanders -- 5.1.6.4. Object Illumination Beam -- 5.1.6.5. Reference Beam -- 5.1.6.6. Angle between Object and Reference Beams -- 5.1.7. Holographic Recording Materials -- 5.1.8. Holographic Interferometry -- 5.1.8.1. Real-Time HI -- 5.1.8.2. Double-Exposure HI -- 5.1.8.3. Time-Average HI -- 5.1.8.4. Real-Time, Time-Average HI -- 5.1.8.5. Stroboscopic Illumination/Stroboscopic HI -- 5.1.9. Special Techniques in Holographic Interferometry -- 5.1.9.1. Two-Reference Beam HI -- 5.1.9.2. Sandwich HI -- 5.1.9.3. Reflection HI -- 5.1.9.4. Heterodyne HI -- 5.1.10. Holographic Contouring/Shape Measurement -- 5.1.10.1. Dual-Wavelength Method -- 5.1.10.2. Dual-Refractive Index Method -- 5.1.10.3. Dual-Illumination Method -- 5.1.11. Digital Holography -- 5.1.11.1. Recording of Digital Holograms -- 5.1.11.2. Reconstruction of Digital Holograms -- 5.1.12. Digital Holographic Interferometry -- 5.1.13. Fringe Formation and Measurement of Displacement Vector -- 5.1.14. Loading of the Object -- 5.2. Speckle Phenomenon, Speckle Photography, and Speckle Interferometry -- 5.2.1. Speckle Phenomenon -- 5.2.2. Average Speckle Size -- 5.2.2.1. Objective Speckle Pattern -- 5.2.2.2. Subjective Speckle Pattern -- 5.2.3. Relation between Object Displacement and Speckle Shift -- 5.2.3.1. In-Plane Displacement -- 5.2.3.2. Out-of-Plane Displacement -- 5.2.3.3. Tilt of the Object -- 5.2.4. Speckle Photography -- 5.2.5. Methods of Evaluation -- 5.2.5.1. Point-Wise Filtering Method -- 5.2.5.2. Whole-Field Filtering -- 5.2.5.3. Fourier Filtering Method: Measurement of Out-of-Plane Displacement -- 5.2.6. Speckle Photography with Vibrating Objects: In-Plane Vibration -- 5.2.7. Sensitivity of Speckle Photography -- 5.2.8. Particle Image Velocimetry -- 5.2.9. White Light Speckle Photography -- 5.2.10. Shear Speckle Photography -- 5.2.11. Speckle Interferometry -- 5.2.12. Correlation Coefficient in Speckle Interferometry -- 5.2.13. Out-of-Plane Speckle Interferometer -- 5.2.14. In-Plane Measurement: Duffy's Method -- 5.2.14.1. Filtering -- 5.2.14.2. Fringe Formation -- 5.2.14.3. Duffy's Arrangement: Enhanced Sensitivity -- 5.2.15. Speckle Shear Interferometry -- 5.2.15.1. Meaning of Shear -- 5.2.15.2. Methods of Shearing -- 5.2.15.3. Theory of Speckle Shear Interferometry -- 5.2.15.4. Fringe Formation -- 5.2.15.5. Shear Interferometry without the Influence of In-Plane Component -- 5.2.16. Electronic Speckle Pattern Interferometry -- 5.2.16.1. Out-of-Plane Displacement Measurement -- 5.2.16.2. In-Plane Displacement Measurement -- 5.2.16.3. Vibration Analysis -- 5.2.16.4. Measurement on Small Objects -- 5.2.17. Shear ESPI Measurement -- 5.2.18. Contouring in ESPI-Shape Measurement -- 5.2.18.1. Change of Direction of Illumination -- 5.2.18.2. Change of Wavelength -- 5.2.18.3. Change of Medium Surrounding the Object -- 5.2.18.4. Tilt of the Object -- 5.3. Moire Phenomena -- 5.3.1. Formation of Moire Pattern -- 5.3.1.1. Moire Fringe Pattern between Two Linear Gratings -- 5.3.2. Moire between Reference and Deformed Gratings -- 5.3.2.1. Reference and Deformed Gratings Oriented along Y-Axis -- 5.3.2.2. Reference Grating Inclined -- 5.3.2.3. Gratings with Different Periods -- 5.3.3. Derivative of Distortion Function -- 5.3.4. Moire Pattern with Deformed Sinusoidal Grating -- 5.3.4.1. Multiplicative Moire Pattern -- 5.3.4.2. Additive Moire Pattern -- 5.3.5. Talbot Phenomenon -- 5.3.5.1. Talbot Effect in Collimated Illumination -- 5.3.5.2. Cut-Off Distance -- 5.3.5.3. Talbot Effect in Noncollimated Illumination -- 5.4. Photoelasticity -- 5.4.1. Superposition of. Two Plane Polarized Waves -- 5.4.1.1. Linear Polarization -- 5.4.1.2. Circular Polarization -- 5.4.2. Production of Polarized Light -- 5.4.2.1. Reflection -- 5.4.2.2. Refraction -- 5.4.2.3. Double Refraction -- 5.4.3. Optical Elements from Crystals -- 5.4.3.1. Polarizers -- 5.4.3.2. Phase Plates -- 5.4.4. Dichroism -- 5.4.5. Scattering -- 5.4.6. Malus Law -- 5.4.7. Stress-Optic Law -- 5.4.8. Strain-Optic Law -- 5.4.9. Methods of Analysis -- 5.4.9.1. Plane Polariscope -- 5.4.9.2. Circular Polariscope -- 5.4.9.3. Evaluation Procedure -- 5.4.10. Measurement of Fractional Fringe Order -- 5.4.10.1. Tardy's Method -- 5.4.11. Phase Shifting -- 5.4.11.1. I soclinics Computation -- 5.4.11.2. Computation of Isochromatics -- 5.4.12. Birefringent Coating Method-Reflection Polariscope -- 5.4.13. Holophotoelasticity -- 5.4.13.1. Single-Exposure Holophotoelasticity -- 5.4.13.2. Double-Exposure Holophotoelasticity -- 5.4.14. Three-Dimensional Photoelasticity -- 5.4.14.1. Frozen Stress Method -- 5.4.14.2. Scattered Light Photoelasticity -- 5.5. Microscopy -- 5.5.1. Simple Magnifier -- 5.5.2. Compound Microscope -- 5.5.3. Kohler Illumination -- 5.5.4. Empty Magnification -- 5.5.5. Depth of Field -- 5.5.6. Depth of Focus -- 5.5.7. Contrast-Enhancing Techniques -- 5.5.7.1. Dark Field Microscopy -- 5.5.7.2. Rheinburg Illumination -- 5.5.7.3. Phase Contrast Microscopy -- 5.5.7.4. Interference Microscopy -- 5.5.7.5. Polarization Microscopy -- 5.5.7.6. Hoffman Modulation Contrast -- 5.5.7.7. Differential Interference Contrast Microscopy -- 5.5.8. Metrological Microscope -- 5.5.9. Confocal Scanning Optical Microscope -- Problems -- 6.1. Introduction -- 6.2. Spectrometer -- 6.3. Goniometer -- 6.3.1. Measurement of Refractive Index of a Liquid -- 6.3.2. Hilger-Chance Refractometer -- 6.4. Methods Based on the Measurement of Critical Angle -- 6.4.1. Pulfrich Refractometer -- 6.4.2. Abbe Refractometer -- 6.5. Measurement of Brewster Angle -- 6.6. Ellipsometry -- 6.6.1. Null Ellipsometry -- 6.6.2. Photometric Ellipsometry -- 6.6.3. Optical Constants of a Sample -- 6.6.4. Optical Constant of a Thin Film -- 6.7. Spectral Transmission Measurement -- 6.7.1. Refractive Index of the Substrate -- 6.8. Interferometry -- Problems -- 7.1. Introduction
Note continued: 7.2. Measurement of Radius of Curvature -- 7.2.1. Indirect Method: Measurement of the Sagitta -- 7.2.1.1. Mechanical Spherometer -- 7.2.2. Direct Methods -- 7.2.2.1. Image Formation -- 7.2.2.2. Differences in Conjugate Positions -- 7.2.2.3. Optical Spherometer -- 7.2.2.4. Measurement of Long Radius of Curvature -- 7.2.2.5. Cavity Method-Measurement of Long Radius of Curvature of a Concave Surface -- 7.2.2.6. Measurement of Very Long Radii of Curvature -- 7.2.2.7. Radius of Curvature with a Test Plate -- 7.2.2.8. Newton's Rings Method -- 7.3. Scanning Profilometry -- 7.4. Radius of Curvature Measurement by Talbot Interferometry -- 7.5. Measurement of Focal Length -- 7.5.1. Focal Length of a Thin Lens -- 7.5.1.1. Focal Length by Imaging -- 7.5.1.2. y'/tan 0' Method -- 7.5.1.3. Magnification Method -- 7.5.1.4. Focal Length of a Negative/Diverging Lens -- 7.5.1.5. Nodal Slide Method -- 7.5.1.6. Focal Length Measurement from the Difference between Conjugate Positions -- 7.6. Moire Deflectometry -- Problems -- 8.1. Testing of a Flat Surface -- 8.1.1. Liquid Surface as a Reference -- 8.1.2. Calibration by Three-Flat Method -- 8.2. Testing of Spherical Surfaces -- 8.2.1. Scatter-Plate Interferometer -- 8.2.2. Point Diffraction Interferometer -- 8.2.3. Laser Unequal Path Interferometer -- 8.2.4. Fizeau Interferometer -- 8.2.5. Shack Cube Interferometer -- 8.3. Testing of Aspherical Surfaces -- 8.3.1. Null Test with a Computer-Generated Hologram -- 8.4. Oblique Incidence Interferometer -- 8.5. Shear Interferometry -- 8.6. Long Wavelength Interferometry -- Problems -- 9.1. Definition of an Angle -- 9.2. Autocollimator -- 9.2.1. Measurement of Angle of a Glass Wedge -- 9.2.2. Angle of a Prism -- 9.2.3. Measurement of Error in 90° Angle of a Right-Angle Prism -- 9.2.4. Measurement of Error in 45° Angle of a Right-Angle Prism -- 9.2.5. Testing of a Pentaprism -- 9.3. Goniometer -- 9.3.1. Measurement of Absolute Angle -- 9.4. Interferometry -- 9.4.1. Angle of a Wedge Plate -- 9.4.2. Angle between the Surfaces of an Opaque Plate or a Long Cylinder/Bar -- 9.4.3. Interferometric Testing of Prisms -- 9.4.3.1. Testing of a Right-Angle Prism -- Problems -- 10.1. Triangulation-Based Probe -- 10.2. Spectral Reflectometry -- 10.3. Ellipsometry -- 10.4. Interferometry -- 10.4.1. Fringes of Equal Chromatic Order -- 10.4.2. Fizeau Fringes -- 10.4.3. Michelson Interferometer -- 10.4.4. Haidinger Fringes -- 10.5. Low Coherence Interferometry -- 10.6. Confocal Microscopy -- 10.7. Light Section Microscopy -- Problems -- 11.1. Introduction -- 11.2. Scattering from a Moving Particle-Doppler Shift -- 11.2.1. Reference Beam Mode -- 11.2.2. Fringe Mode -- 11.3. Scatter Light Beams Anemometry -- 11.4. Multichannel LDA Systems -- 11.5. Signal Processing -- 11.6. Particle Image Velocimetry -- 11.7. Measurement of Very High Velocity -- Problems -- 12.1. Pressure Sensitive Paint -- 12.2. Measurement of Pressure with Photoelastic Material -- 12.3. Ruby Pressure Standard -- 12.4. Fabry-Perot Etalon as Pressure Sensor -- 12.4.1. FP Etalon with Flexible Mirrors -- 12.4.2. Change of Refractive Index -- Problems -- 13.1. Introduction -- 13.2. Intensity Modulation -- 13.2.1. Displacement Measurement: Lateral Shift between the Fibers -- 13.2.2. Displacement Sensor: Beam Attenuation -- 13.2.3. Proximity Probe -- 13.2.4. Microbend Displacement or Pressure Sensor -- 13.2.5. Measurement of the Refractive Index of Liquids: Fiber Optic Refractometer -- 13.3. Phase Modulation -- 13.3.1. Interferometric Sensors -- 13.3.1.1. Temperature Measurement -- 13.3.1.2. Fiber Optic Pressure Sensor -- 13.3.1.3. Fiber Optic Strain Sensor -- 13.3.1.4. Fiber Optic Accelerometers -- 13.3.1.5. Fiber Optic Gyroscope or Rotation Rate Sensors -- 13.3.1.6. Fiber Optic Fabry-Perot Interferometer -- 13.4. Pressure Sensor: Membrane Type -- 13.4.1. Pressure Sensor: Capillary Tip -- 13.5. Bragg Grating Sensors -- 13.6. Polarization Maintaining Single-Mode Fibers -- 13.6.1. Current Measurement: Faraday Rotation -- 13.7. Fiber Optic Biosensors -- 13.7.1. Direct Fiber Optic Sensors -- 13.7.1.1. Direct Physical Sensors -- 13.7.1.2. Direct Chemical Sensors -- 13.7.2. Indirect Fiber Optic Sensors -- 13.7.2.1. Indirect Physical Sensors -- 13.7.2.2. Indirect Chemical Sensors -- Problems -- 14.1. Introduction -- 14.2. Measurement of Gauge Blocks and Slip Gauges -- 14.2.1. Method of Exact Fractions -- 14.3. Gauge Block Interferometry: Comparison with a Standard -- 14.3.1. Single Wavelength Interferometry for Gauge Blocks -- 14.4. Comb Generation and Gauge Block Calibration -- 14.4.1. Measurement of Gauge Block with Optical Comb -- 14.4.2. Distance Measurement with Frequency Comb -- 14.5. Modulated Frequency-Displacement Sensor -- 14.5.1. Frequency-Modulated Continuous Wave Laser Radar -- 14.6. Displacement Measurement with Interferometry -- 14.6.1. Two-Frequency Laser Interferometer for Displacement Measurement -- 14.7. Angle Interferometer -- 14.8. Moire Technique for Displacement Measurement -- 14.9. Displacement Distribution Measurement -- 14.9.1. Hologram Interferometry -- 14.9.2. Measurement of Amplitude of Vibration -- 14.9.3. Electronic Detection: Electronic Speckle Pattern Interferometry/Digital Speckle Pattern Interferometry and Speckle Photography -- 14.10. Moire Techniques -- 14.10.1. Measurement of In-Plane Displacement/Deformation -- 14.10.2. Two-Dimensional In-Plane Displacement Measurement -- 14.10.3. High Sensitivity In-Plane Displacement Measurement -- 14.10.4. Measurement of Out-of-Plane Component -- 14.10.4.1. Shadow Moire Method -- 14.10.4.2. Projection Moire -- 14.10.5. Measurement of Amplitudes of Vibration -- 14.10.6. Reflection Moire Method -- 14.10.7. Slope Determination for Dynamic Events -- 14.11. Digital Image Correlation -- Problems
Summary Introduction to Optical Metrology examines the theory and practice of various measurement methodologies utilizing the wave nature of light. The book begins by introducing the subject of optics, and then addresses the propagation of laser beams through free space and optical systems. After explaining how a Gaussian beam propagates, how to set up a collimator to get a collimated beam for experimentation, and how to detect and record optical signals
Bibliography Includes bibliographical references and index
Subject Optical measurements.
Metrology.
Wave theory of light.
TECHNOLOGY & ENGINEERING -- Technical & Manufacturing Industries & Trades.
Metrology
Optical measurements
Wave theory of light
Form Electronic book
ISBN 9781482236118
1482236117
Other Titles Optical metrology