Limit search to available items
Book Cover
E-book
Author Moodley, Preshanthan

Title Advances in Lignocellulosic Biofuel Production Systems
Published San Diego : Elsevier Science & Technology, 2023
©2023

Copies

Description 1 online resource (505 pages)
Series Applied Biotechnology Reviews Series
Applied Biotechnology Reviews Series
Contents Front Cover -- Advances in Lignocellulosic Biofuel Production Systems -- Copyright Page -- Contents -- List of contributors -- Preface -- I. Introduction -- 1 Current status of lignocellulosic biofuel production system-an overview -- 1.1 Introduction -- 1.2 Lignocellulosic biomass: an ideal candidate feedstock for biofuels -- 1.2.1 Pretreatment -- 1.2.2 Bioethanol -- 1.2.3 Biohydrogen -- 1.2.4 Sustainable aviation fuel -- 1.2.5 Biogas -- 1.3 Biorefineries -- 1.4 Genetic engineering of feedstocks and fermenting microorganisms -- 1.5 Artificial intelligence in biofuel production -- 1.6 Bioreactor configuration for enhanced biofuel processes -- 1.7 Current status of global energy recovery from lignocelluloses -- 1.8 Conclusion and future perspectives -- References -- II. Feedstock & -- processing -- 2 Lignocellulosic biomass: A feedstock to support the circular economy -- 2.1 Introduction -- 2.2 Types and composition of lignocellulosic biomass -- 2.3 Pretreatment strategies for the lignocellulosic biomass conversion as a feedstock for biofuel production -- 2.3.1 Physical pretreatment -- 2.3.2 Chemical pretreatment -- 2.3.3 Biological pretreatment -- 2.3.4 Physicochemical pretreatment -- 2.3.5 Advanced methods in feedstock pretreatment -- 2.4 Current insights into the conversion of lignocellulosic biomass as a feedstock for biofuel production -- 2.5 Link of lignocellulosic biomass with circular economy -- 2.6 Conclusions and future prospects -- Abbreviations -- References -- 3 Genetically engineered lignocellulosic feedstocks for enhanced biofuel yields -- 3.1 Introduction -- 3.2 Lignocellulose ethanol production -- 3.3 Key traits to increasing lignocellulosic biomass production and yield -- 3.4 Genetic engineering strategies to modify plant biomass properties -- 3.4.1 Changing the structure and content of lignin in the cell
3.4.2 The increasing cellulose content in biomass -- 3.4.3 Hemicellulose biosynthesis and engineering -- 3.4.4 Cellulase enzymes for enzymatic hydrolysis -- 3.4.5 Pectin biosynthesis and modification -- 3.4.6 Yeast fermentation step -- 3.5 Genetic modification through CRISPR-Cas9 technology -- 3.6 Conclusions and future perspectives -- Abbreviations -- References -- 4 Pretreatment technologies for lignocellulosic biomass refineries -- 4.1 Introduction -- 4.2 Bioprocessing schemes of lignocellulosic biomass -- 4.3 Pretreatment of lignocellulosic biomass -- 4.3.1 Physical pretreatments -- 4.3.2 Chemical pretreatments -- 4.3.2.1 Acid pretreatment -- 4.3.2.2 Alkaline pretreatment -- 4.3.2.3 Organic solvent pretreatment -- 4.3.2.4 Ionic liquid pretreatment -- 4.3.3 Physicochemical pretreatments -- 4.3.3.1 Steam explosion -- 4.3.3.2 Ammonia fiber explosion -- 4.3.3.3 Microwave-assisted pretreatment -- 4.3.4 Biological pretreatment -- 4.4 Recent advancements in the pretreatment -- 4.5 Challenges in the commercialization of pretreatment technologies -- 4.6 Conclusion and future perspectives -- References -- 5 Application of microwave energy in the processing of lignocellulosic biomass -- 5.1 Introduction -- 5.2 Microwave-assisted thermochemical conversion-gasification and pyrolysis -- 5.3 Microwave-assisted biological conversion -- 5.4 Microwave-assisted extraction of high-value compounds -- 5.5 Factors affecting efficiency of microwave-assisted biomass processing -- 5.6 Summary and conclusion -- Abbreviations -- References -- 6 Cellulosic-based enzymes for enhanced saccharification for biofuel production -- 6.1 Introduction -- 6.2 Cellulase and hydrolysis mechanism -- 6.3 Pretreatment techniques -- 6.3.1 Physical/mechanical methods -- 6.3.2 Physiochemical method -- 6.3.3 Chemical method -- 6.3.4 Biological method -- 6.3.5 Enzyme testing
8.4.4.3 Scanning electron microscope analysis of switch grass treated by water and acid mine drainage before and after enzy... -- 8.4.5 Enzymatic hydrolysis of acid mine drainage treated and untreated switch grass -- 8.5 Discussion and conclusion -- References -- III. Recent trends in bioprocessing -- 9 Metabolic engineering of microorganisms in advancing biofuel production -- 9.1 Introduction -- 9.2 Overview of metabolic pathways of microorganisms for biofuels -- 9.3 Metabolic engineering of microorganisms for biofuel production -- 9.3.1 Metabolic engineering of bacteria for biofuel production -- 9.3.2 Metabolic engineering of cyanobacteria for biofuel production -- 9.3.3 Metabolic engineering fungi for biofuel production -- 9.3.4 Metabolic engineering of yeast for biofuel production -- 9.4 Cell surface display engineering of microorganisms for biofuel production -- 9.5 Conclusion and future prospects -- References -- 10 Lignocellulosic biofuel production: Insight into microbial factories -- 10.1 Introduction -- 10.2 Lignocellulosic biomass and pretreatment -- 10.3 Microbial fermentation and process types -- 10.4 Kinetic modeling for bioprocess development -- 10.5 Lignocellulosic biofuel production -- 10.5.1 Bioethanol -- 10.5.2 Biobutanol -- 10.5.3 Biohydrogen -- 10.5.4 Biogas -- 10.6 Current challenges of lignocellulosic biofuel production -- 10.7 Advancements in lignocellulosic biofuel production -- 10.8 Conclusion and future perspectives -- Abbreviations -- References -- 11 Cell immobilization strategies to enhance yield of liquid biofuels -- 11.1 Introduction -- 11.2 Biofuels from lignocellulosic biomass -- 11.3 Immobilization methods/techniques -- 11.3.1 Entrapment/encapsulation -- 11.3.2 Physical adsorption -- 11.3.3 Covalent binding -- 11.3.4 Cross-linking -- 11.4 Immobilized bioprocess components -- 11.4.1 Immobilization of whole cells
11.4.2 Immobilization of enzymes -- 11.4.3 Substrates for immobilization -- 11.4.4 Immobilized bioreactor system -- 11.5 Production of sustainable biofuels -- 11.5.1 Bioethanol -- 11.5.2 Biodiesel -- 11.5.3 Biohydrogen -- 11.5.4 Biobutanol -- 11.6 Life cycle analysis of liquid biofuels using immobilization techniques -- 11.7 Patents, commercial applications, and research gaps -- 11.7.1 Patents -- 11.7.2 Commercial applications -- 11.7.3 Research gaps -- 11.8 Conclusion and future perspectives -- References -- IV. Advances in modeling and development -- 12 Artificial intelligence as a tool for yield prediction in biofuel production systems -- 12.1 Introduction -- 12.2 Machine learning in biofuel production systems -- 12.2.1 Biological processes -- 12.2.2 Thermochemical processes -- 12.3 Artificial intelligence employment in lignocellulosic biomass pretreatment -- 12.4 Artificial intelligence employment in pretreatment inhibitor profile analysis -- 12.5 Impact of artificial intelligence on lignocellulosic biofuel production systems -- 12.6 Conclusions and future perspectives -- Abbreviations -- References -- 13 Integrated biorefineries: The path forward -- 13.1 Introduction -- 13.2 Feedstocks for biorefineries -- 13.2.1 Lignocellulosic substrates -- 13.2.2 Lignocellulose-starch substrates -- 13.3 Overview of pretreatment -- 13.4 Pretreatment selection criteria for microbial-derived products in biorefineries -- 13.5 Microbial fermentation -- 13.6 Lignocellulosic fermentation process type -- 13.6.1 Separate hydrolysis and fermentation -- 13.6.2 Simultaneous saccharification and fermentation -- 13.6.3 Simultaneous saccharification and fermentation with a prehydrolysis step -- 13.7 Lignocellulosic biofuel production -- 13.7.1 Bioethanol -- 13.7.2 Biohydrogen -- 13.7.3 Biogas -- 13.8 Microbial high-value products from lignocellulosic biomass
Notes 13.8.1 Lactic acid
Description based on publisher supplied metadata and other sources
Form Electronic book
Author Ray, Ramesh C
Gueguim Kana, Evariste B
ISBN 9780323913447
032391344X