Limit search to available items
Book Cover
E-book
Author Llobet, Antoni

Title Molecular Water Oxidation Catalysis
Published Hoboken : Wiley, 2014

Copies

Description 1 online resource (305 pages)
Contents Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 Structural Studies of Oxomanganese Complexes for Water Oxidation Catalysis -- 1.1 Introduction -- 1.2 Structural Studies of the OEC -- 1.3 The Dark-Stable State of the OEC -- 1.4 Biomimetic Oxomanganese Complexes -- 1.5 Base-Assisted O-O Bond Formation -- 1.6 Biomimetic Mn Catalysts for Artificial Photosynthesis -- 1.7 Conclusion -- Acknowledgments -- References -- Chapter 2 O-O Bond Formation by a Heme Protein: The Unexpected Efficiency of Chlorite Dismutase -- 2.1 Introduction -- 2.2 Origins of O2-Evolving Chlorite Dismutases (Clds) -- 2.3 Major Structural Features of the Proteins and their Active Sites -- 2.4 Efficiency, Specificity, and Stability -- 2.5 Mechanistic Insights from Surrogate Reactions with Peracids and Peroxide -- 2.6 Possible Mechanisms -- 2.7 Conclusion -- Acknowledgements -- References -- Chapter 3 Ru-Based Water Oxidation Catalysts -- 3.1 Introduction -- 3.2 Proton-Coupled Electron Transfer (PCET) and Water Oxidation Thermodynamics -- 3.3 O-O Bond Formation Mechanisms -- 3.4 Polynuclear Ru Water Oxidation Catalysts -- 3.5 Mononuclear Ru WOCs -- 3.6 Anchored Molecular Ru WOCs -- 3.7 Light-Induced Ru WOCs -- 3.8 Conclusion -- Acknowledgments -- References -- Chapter 4 Towards the Visible Light-Driven Water Splitting Device: Ruthenium Water Oxidation Catalysts with Carboxylate-Containing Ligands -- 4.1 Introduction -- 4.2 Binuclear Ru Complexes -- 4.3 Mononuclear Ru Complexes -- 4.3.1 Ru-O2N-N3 Analogs -- 4.3.2 Ru-O2N2-N2 Analogs -- 4.4 Homogeneous Light-Driven Water Oxidation -- 4.4.1 The Three-Component System -- 4.4.2 The Supramolecular Assembly Approach -- 4.5 Water Oxidation Device -- 4.5.1 Electrochemical Water Oxidation Anode -- 4.5.2 Photo-Anode for Water Oxidation -- 4.6 Conclusion -- References
8.2 Fe-Tetrasulfophthalocyanine -- 8.3 Fe-TAML -- 8.4 Fe-mcp -- 8.5 Fe2O3 as a Microheterogeneous Catalyst -- 8.6 Conclusion -- References -- Chapter 9 Water Oxidation by Co-Based Oxides with Molecular Properties -- 9.1 Introduction -- 9.2 CoCat Formation -- 9.3 Structure and Structure-Function Relations -- 9.4 Functional Characterization -- 9.5 Directly Light-Driven Water Oxidation -- References -- Chapter 10 Developing Molecular Copper Complexes for Water Oxidation -- 10.1 Introduction -- 10.2 A Biomimetic Approach -- 10.2.1 Thermochemistry: Developing Oxidant/Base Combinations as PCET Reagents -- 10.2.2 Copper Complexes with Alkylamine Ligands -- 10.2.3 Copper Complexes with Anionic Ligands -- 10.2.4 Lessons Learned: Thermochemical Insights and Oxidant/Base Compatibility -- 10.3 An Aqueous System: Electrocatalysis with (bpy)Cu(II) Complexes -- 10.3.1 System Selection: bpy + Cu -- 10.3.2 Observing Electrocatalysis -- 10.3.3 Catalyst Turnover Number and Turnover Frequency -- 10.3.4 Catalyst Speciation: Monomer, Dimer, or Nanoparticles? -- 10.4 Conclusion -- Acknowledgement -- References -- Chapter 11 Polyoxometalate Water Oxidation Catalytic Systems -- 11.1 Introduction -- 11.2 Recent POM WOCs -- 11.3 Assessing POM WOC Reactivity -- 11.4 The Ru(oxbpy)32+/S2O82- System -- 11.5 Ru(bpy)33+ as an Oxidant for POM WOCs -- 11.6 Additional Aspects of WOC System Stability -- 11.7 Techniques for Assessing POM WOC Stability -- 11.8 Conclusion -- Acknowledgments -- References -- Chapter 12 Quantum Chemical Characterization of Water Oxidation Catalysts -- 12.1 Introduction -- 12.2 Computational Details -- 12.2.1 Density Functional Theory Calculations -- 12.2.2 Multiconfigurational Calculations -- 12.3 Methodology -- 12.3.1 Solvation and Standard Reduction Potentials -- 12.3.2 Multideterminantal State Energies
12.4 Water Oxidation Catalysts -- 12.4.1 Ruthenium-Based Catalysts -- 12.4.2 Cobalt-Based Catalysts -- 12.4.3 Iron-Based Catalysts -- 12.5 Conclusion -- References -- Index -- Supplemental Images
Summary Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most important catalysts discovered today based on first and second row transition metals. A strong emphasis is placed on the description of their performance, as well as how they work from a mechanistic perspective. In addition, a theoretical description of some of the most relevant catalysts based on DFT are presented, as well as a description of related natural systems, such as the oxygen evolving system of photosystem II and the heme chlorite-dismutase. This book is a valuable resource for researchers working on water oxidation catalysis, solar energy conversion and artificial photosynthesis, as well as for chemists and materials scientists with a broad interest in new sustainable energy conversion schemes
Notes Print version record
Subject Electric power production from chemical action.
Energy harvesting.
Renewable energy sources.
Water -- Purification -- Oxidation -- By-products
Electric power production from chemical action
Energy harvesting
Renewable energy sources
Form Electronic book
ISBN 9781118698631
1118698630
9781118698648
1118698649
9781306686648
1306686644