1. Introduction 2. Differential and integral forms of isoperimetric inequalities 3. Proof of Theorem 1.1 4. A relation between the distribution of a function and its derivative 5. A variational problem 6. The discrete version of Theorem 5.1 7. Proof of Propositions 1.3 and 1.5 8. A special case of Theorem 1.2 9. The uniform distribution on the sphere 10. Existence of optimal Orlicz spaces 11. Proof of Theorem 1.9 (the case of the sphere) 12. Proof of Theorem 1.9 (the Gaussian case) 13. The isoperimetric problem on the real line 14. Isoperimetric and Sobolev-type inequalities on the real line 15. Extensions of Sobolev-type inequalities to product measures on $\mathbf {R}̂n$
Notes
"September 1997, volume 129, number 616 (end of volume)."
Bibliography
Includes bibliographical references (pages 109-111)