Limit search to available items
Record 7 of 11
Previous Record Next Record
Book Cover
E-book

Title Radar automatic target recognition (ATR) and non-cooperative target recognition (NCTR) / edited by David Blacknell, Hugh Griffiths
Published London, United Kingdom : The Institute of Engineering and Technology, 2013
Table of Contents
1.Introduction1
1.1.Motivation1
1.2.Definitions and acronyms2
1.3.Scope of book3
2.Automatic target recognition of ground targets5
2.1.Introduction5
2.2.SAR phenomenology7
2.3.The ATR processing chain11
2.3.1.Pre-screening11
2.3.2.Template-matching14
2.3.3.Feature-based classification15
2.4.Use of contextual information in target detection19
2.4.1.Motivation19
2.4.2.Statistical formulation19
2.4.3.Simulated results21
2.5.Databases and modelling22
2.5.1.Database construction22
2.5.2.Case study: model-based ATR using MOCEM24
2.6.Performance assessment26
2.6.1.Receiver operating characteristic (ROC) curves26
2.6.2.Confusion matrices29
2.6.3.Operational assessment32
2.7.Conclusions34
 Acknowledgements34
 References35
3.Automatic recognition of air targets37
3.1.Introduction37
3.2.Fundamentals of the target recognition process38
3.2.1.Introduction38
3.2.2.Target features38
3.2.3.Aircraft recognition techniques and waveform design39
3.2.4.Target signature measurement41
3.2.5.Radar range equation for radar target recognition42
3.2.6.Main classification functions43
3.2.7.Database44
3.2.8.Classifier44
3.2.9.Assembly of database46
3.2.10.Classifier performance47
3.2.11.Conclusions48
3.3.Jet engine recognition48
3.3.1.Introduction48
3.3.2.Jet engine mechanics49
3.3.3.Interaction of radar signal with engine blades49
3.3.4.Jet engine modulation spectrum: engine rotational rate50
3.3.5.Jet engine modulation spectrum: rotor stage spectrum52
3.3.6.Jet engine modulation spectrum: mixing products from rotor stages54
3.3.7.Determination of blade count55
3.3.8.JEM waveform55
3.3.9.System requirements56
3.3.10.Conclusions56
3.4.Helicopter recognition57
3.4.1.Introduction57
3.4.2.Main rotor blade flash57
3.4.3.Detection of blade flash60
3.4.4.Waveform and system requirements for blade flash detection62
3.4.5.Blade flash detection62
3.4.6.Helicopter classification using blade flash63
3.4.7.Main rotor hub spectrum63
3.4.8.Rear rotor blades65
3.4.9.Radar range equation for helicopter recognition66
3.4.10.Helicopter recognition summary67
3.5.Range-Doppler imaging67
3.5.1.Introduction67
3.5.2.Helicopter signature69
3.5.3.Jet airliner signature70
3.5.4.Business jet signature71
3.5.5.Propeller aircraft signature72
3.5.6.Waveforms and system requirements for supporting RDI72
3.5.7.Conclusions73
3.6.Aircraft target recognition conclusions73
 Acknowledgements74
 References74
4.Radar ATR of maritime targets77
4.1.Introduction77
4.2.The use of high range resolution (HRR) profiles for ATR78
4.3.The derivation of ATR features from HRR profiles80
4.3.1.Length estimate80
4.3.2.Position specific matrices (PSMs)83
4.3.2.1.Determination of length83
4.3.2.2.Alignment83
4.3.2.3.Quantisation83
4.3.2.4.Creation of reference PSMs84
4.3.2.5.Compare the quantised test profile to the reference PSMs84
4.3.2.6.Determine a figure of merit84
4.3.2.7.Classification86
4.3.3.Other examples of ATR features86
4.3.4.Choosing sets of uncorrelated features87
4.4.Ship ATR under the influence of multipath88
4.4.1.What is multipath?88
4.4.2.The problem of defining testing and training vectors90
4.5.Results92
4.5.1.Length estimate92
4.5.1.1.Results for La and Lb based on measurements of ship HRR profiles92
4.5.1.2.Simulation of ship HRR profiles94
4.5.2.PSM results96
4.5.3.Results based on geometrical, statistical and structural features99
4.5.3.1.Measurements99
4.5.3.2.Classification based on simulated ships104
4.6.The mitigation of multipath effects on ship ATR107
4.6.1.Using several antennas109
4.6.2.Using several frequencies110
4.6.3.Combining two antennas and two frequencies114
4.6.4.Classification improvement via multi-frequency and/or multi-antenna approach120
4.7.Summary123
 References125
5.Effects of image quality on target recognition127
5.1.Introduction127
5.2.Improving ATR performance via PGA image quality enhancement128
5.3.Improving ATR performance using high resolution, PWF-processed full-polarisation SAR data131
5.4.Improving ATR performance via high-definition image processing138
5.5.Reconstruction of interrupted SAR imagery147
5.6.Summary and conclusions153
 References153
6.Comparing classifier effectiveness157
6.1.Introduction157
6.2.NCTI studies158
6.3.Measurements158
6.3.1.TIRA system158
6.3.2.Targets160
6.4.Idea of classification160
6.4.1.Appropriate features160
6.4.2.HRR and 2D ISAR161
6.4.3.2D ISAR template correlation classifier164
6.4.4.Selection of radar parameters166
6.5.Classification scheme166
6.5.1.Pre-processing unit167
6.5.2.Feature extraction/reduction168
6.5.3.Choosing a classifier169
6.5.4.Test of classifiers170
6.6.Feature extraction171
6.6.1.Classification results using different feature sets172
6.7.Conclusion174
 References174
7.Biologically inspired and multi-perspective target recognition177
7.1.Introduction177
7.2.Biologically inspired NCTR179
7.2.1.Waveform design179
7.2.2.Nectar-feeding bats and bat-pollinated plants180
7.2.3.Classification of flowers181
7.2.3.1.Data collection182
7.2.3.2.Data pre-processing and results182
7.2.4.Classification of insects186
7.3.Acoustic micro-Doppler188
7.3.1.Description of the acoustic radar190
7.3.2.Experimentation190
7.3.3.Classification performance results193
7.4.Multi-aspect NCTR194
7.4.1.Data preparation199
7.4.2.Feature extraction199
7.4.3.Multi-perspective classifiers200
7.4.4.Multi-perspective classification performance202
7.5.Summary206
 References208
8.Radar applications of compressive sensing213
8.1.Introduction213
8.2.Principles of compressive sensing214
8.2.1.Sparse and compressible signals214
8.2.2.Restricted isometric property and coherence216
8.2.3.Signal reconstruction217
8.2.3.1.Minimum l2 norm reconstruction218
8.2.3.2.Minimum l0 norm reconstruction218
8.2.3.3.Minimum l1 norm reconstruction218
8.2.3.4.Example of l1 norm versus l2 norm reconstruction219
8.3.Reconstruction algorithms220
8.3.1.Convex optimisation220
8.3.1.1.Basis pursuit220
8.3.1.2.Basis pursuit de-noising221
8.3.1.3.Least absolute shrinkage and selection operator221
8.3.2.Greedy constructive algorithms222
8.3.2.1.Matching pursuit222
8.3.2.2.Orthogonal matching pursuit223
8.3.2.3.Stage-wise orthogonal matching pursuit223
8.3.3.Iterative thresholding algorithms224
8.3.3.1.Iterative hard thresholding225
8.3.3.2.Iterative shrinkage and thresholding226
8.4.Jet engine modulation226
8.4.1.Introduction226
8.4.2.Jet engine model227
8.4.3.Simulation results of JEM compressive sensing228
8.5.Inverse synthetic aperture radar230
8.5.1.Introduction230
8.5.2.Simulation model231
8.6.Conclusions234
 Acknowledgements234
 References234
9.Advances in SAR change detection237
9.1.Introduction237
9.2.An analysis of the CCD algorithm239
9.3.Results using the ùniversal image quality index'242
9.4.Performance comparison of change detection algorithms245
9.4.1.Visual comparisons of the MLE and CCD algorithms253
9.4.2.Coherent change detection performance with shadow regions masked258
9.5.Summary and conclusions263
 References263
10.Future challenges265
10.1.Introduction265
10.2.Future challenges266
10.2.1.Target variability and practical databases266
10.2.2.Complex clutter environments267
10.2.3.Use of contextual information268
10.2.4.Performance assessment and prediction269
10.2.5.Deception and countermeasures271
 References271
 Index273

Copies

Description 1 online resource (xii, 279 pages)
Series IET radar, sonar and navigation series ; 33
IET radar, sonar, navigation and avionics series ; 33.
Contents Machine generated contents note: 1. Introduction -- 1.1. Motivation -- 1.2. Definitions and acronyms -- 1.3. Scope of book -- 2. Automatic target recognition of ground targets -- 2.1. Introduction -- 2.2. SAR phenomenology -- 2.3. ATR processing chain -- 2.3.1. Pre-screening -- 2.3.2. Template-matching -- 2.3.3. Feature-based classification -- 2.4. Use of contextual information in target detection -- 2.4.1. Motivation -- 2.4.2. Statistical formulation -- 2.4.3. Simulated results -- 2.5. Databases and modelling -- 2.5.1. Database construction -- 2.5.2. Case study: model-based ATR using MOCEM -- 2.6. Performance assessment -- 2.6.1. Receiver operating characteristic (ROC) curves -- 2.6.2. Confusion matrices -- 2.6.3. Operational assessment -- 2.7. Conclusions -- Acknowledgements -- References -- 3. Automatic recognition of air targets -- 3.1. Introduction -- 3.2. Fundamentals of the target recognition process -- 3.2.1. Introduction -- 3.2.2. Target features -- 3.2.3. Aircraft recognition techniques and waveform design -- 3.2.4. Target signature measurement -- 3.2.5. Radar range equation for radar target recognition -- 3.2.6. Main classification functions -- 3.2.7. Database -- 3.2.8. Classifier -- 3.2.9. Assembly of database -- 3.2.10. Classifier performance -- 3.2.11. Conclusions -- 3.3. Jet engine recognition -- 3.3.1. Introduction -- 3.3.2. Jet engine mechanics -- 3.3.3. Interaction of radar signal with engine blades -- 3.3.4. Jet engine modulation spectrum: engine rotational rate -- 3.3.5. Jet engine modulation spectrum: rotor stage spectrum -- 3.3.6. Jet engine modulation spectrum: mixing products from rotor stages -- 3.3.7. Determination of blade count -- 3.3.8. JEM waveform -- 3.3.9. System requirements -- 3.3.10. Conclusions -- 3.4. Helicopter recognition -- 3.4.1. Introduction -- 3.4.2. Main rotor blade flash -- 3.4.3. Detection of blade flash -- 3.4.4. Waveform and system requirements for blade flash detection -- 3.4.5. Blade flash detection -- 3.4.6. Helicopter classification using blade flash -- 3.4.7. Main rotor hub spectrum -- 3.4.8. Rear rotor blades -- 3.4.9. Radar range equation for helicopter recognition -- 3.4.10. Helicopter recognition summary -- 3.5. Range-Doppler imaging -- 3.5.1. Introduction -- 3.5.2. Helicopter signature -- 3.5.3. Jet airliner signature -- 3.5.4. Business jet signature -- 3.5.5. Propeller aircraft signature -- 3.5.6. Waveforms and system requirements for supporting RDI -- 3.5.7. Conclusions -- 3.6. Aircraft target recognition conclusions -- Acknowledgements -- References -- 4. Radar ATR of maritime targets -- 4.1. Introduction -- 4.2. use of high range resolution (HRR) profiles for ATR -- 4.3. derivation of ATR features from HRR profiles -- 4.3.1. Length estimate -- 4.3.2. Position specific matrices (PSMs) -- 4.3.2.1. Determination of length -- 4.3.2.2. Alignment -- 4.3.2.3. Quantisation -- 4.3.2.4. Creation of reference PSMs -- 4.3.2.5. Compare the quantised test profile to the reference PSMs -- 4.3.2.6. Determine a figure of merit -- 4.3.2.7. Classification -- 4.3.3. Other examples of ATR features -- 4.3.4. Choosing sets of uncorrelated features -- 4.4. Ship ATR under the influence of multipath -- 4.4.1. What is multipath? -- 4.4.2. problem of defining testing and training vectors -- 4.5. Results -- 4.5.1. Length estimate -- 4.5.1.1. Results for La and Lb based on measurements of ship HRR profiles -- 4.5.1.2. Simulation of ship HRR profiles -- 4.5.2. PSM results -- 4.5.3. Results based on geometrical, statistical and structural features -- 4.5.3.1. Measurements -- 4.5.3.2. Classification based on simulated ships -- 4.6. mitigation of multipath effects on ship ATR -- 4.6.1. Using several antennas -- 4.6.2. Using several frequencies -- 4.6.3. Combining two antennas and two frequencies -- 4.6.4. Classification improvement via multi-frequency and/or multi-antenna approach -- 4.7. Summary -- References -- 5. Effects of image quality on target recognition -- 5.1. Introduction -- 5.2. Improving ATR performance via PGA image quality enhancement -- 5.3. Improving ATR performance using high resolution, PWF-processed full-polarisation SAR data -- 5.4. Improving ATR performance via high-definition image processing -- 5.5. Reconstruction of interrupted SAR imagery -- 5.6. Summary and conclusions -- References -- 6. Comparing classifier effectiveness -- 6.1. Introduction -- 6.2. NCTI studies -- 6.3. Measurements -- 6.3.1. TIRA system -- 6.3.2. Targets -- 6.4. Idea of classification -- 6.4.1. Appropriate features -- 6.4.2. HRR and 2D ISAR -- 6.4.3. 2D ISAR template correlation classifier -- 6.4.4. Selection of radar parameters -- 6.5. Classification scheme -- 6.5.1. Pre-processing unit -- 6.5.2. Feature extraction/reduction -- 6.5.3. Choosing a classifier -- 6.5.4. Test of classifiers -- 6.6. Feature extraction -- 6.6.1. Classification results using different feature sets -- 6.7. Conclusion -- References -- 7. Biologically inspired and multi-perspective target recognition -- 7.1. Introduction -- 7.2. Biologically inspired NCTR -- 7.2.1. Waveform design -- 7.2.2. Nectar-feeding bats and bat-pollinated plants -- 7.2.3. Classification of flowers -- 7.2.3.1. Data collection -- 7.2.3.2. Data pre-processing and results -- 7.2.4. Classification of insects -- 7.3. Acoustic micro-Doppler -- 7.3.1. Description of the acoustic radar -- 7.3.2. Experimentation -- 7.3.3. Classification performance results -- 7.4. Multi-aspect NCTR -- 7.4.1. Data preparation -- 7.4.2. Feature extraction -- 7.4.3. Multi-perspective classifiers -- 7.4.4. Multi-perspective classification performance -- 7.5. Summary -- References -- 8. Radar applications of compressive sensing -- 8.1. Introduction -- 8.2. Principles of compressive sensing -- 8.2.1. Sparse and compressible signals -- 8.2.2. Restricted isometric property and coherence -- 8.2.3. Signal reconstruction -- 8.2.3.1. Minimum l2 norm reconstruction -- 8.2.3.2. Minimum l0 norm reconstruction -- 8.2.3.3. Minimum l1 norm reconstruction -- 8.2.3.4. Example of l1 norm versus l2 norm reconstruction -- 8.3. Reconstruction algorithms -- 8.3.1. Convex optimisation -- 8.3.1.1. Basis pursuit -- 8.3.1.2. Basis pursuit de-noising -- 8.3.1.3. Least absolute shrinkage and selection operator -- 8.3.2. Greedy constructive algorithms -- 8.3.2.1. Matching pursuit -- 8.3.2.2. Orthogonal matching pursuit -- 8.3.2.3. Stage-wise orthogonal matching pursuit -- 8.3.3. Iterative thresholding algorithms -- 8.3.3.1. Iterative hard thresholding -- 8.3.3.2. Iterative shrinkage and thresholding -- 8.4. Jet engine modulation -- 8.4.1. Introduction -- 8.4.2. Jet engine model -- 8.4.3. Simulation results of JEM compressive sensing -- 8.5. Inverse synthetic aperture radar -- 8.5.1. Introduction -- 8.5.2. Simulation model -- 8.6. Conclusions -- Acknowledgements -- References -- 9. Advances in SAR change detection -- 9.1. Introduction -- 9.2. analysis of the CCD algorithm -- 9.3. Results using the ùniversal image quality index' -- 9.4. Performance comparison of change detection algorithms -- 9.4.1. Visual comparisons of the MLE and CCD algorithms -- 9.4.2. Coherent change detection performance with shadow regions masked -- 9.5. Summary and conclusions -- References -- 10. Future challenges -- 10.1. Introduction -- 10.2. Future challenges -- 10.2.1. Target variability and practical databases -- 10.2.2. Complex clutter environments -- 10.2.3. Use of contextual information -- 10.2.4. Performance assessment and prediction -- 10.2.5. Deception and countermeasures -- References
Summary The ability to detect and locate targets by day or night, over wide areas, regardless of weather conditions has long made radar a key sensor in many military and civil applications. However, the ability to automatically and reliably distinguish different targets represents a difficult challenge. Radar Automatic Target Recognition (ATR) and Non-Cooperative Target Recognition (NCTR) captures material presented in the NATO SET-172 lecture series to provide an overview of the state-of-the-art and continuing challenges of radar target recognition. Topics covered include the problem as applied to the ground, air and maritime domains; the impact of image quality on the overall target recognition performance; the performance of different approaches to the classifier algorithm; the improvement in performance to be gained when a target can be viewed from more than one perspective; the impact of compressive sensing; advances in change detection; and challenges and directions for future research. Radar Automatic Target Recognition (ATR) and Non-Cooperative Target Recognition (NCTR) explores both the fundamentals of classification techniques applied to data from a variety of radar modes and selected advanced techniques at the forefront of research, and is essential reading for academic, industrial and military radar researchers, students and engineers worldwide
Analysis military radar researchers
change detection
compressive sensing
classifier algorithm
target recognition performance
image quality
NATO SET-172 lecture series
key sensor
NCTR
noncooperative target recognition
ATR
radar automatic target recognition
Bibliography Includes bibliographical references and index
Subject Radar.
Radar targets.
Radar -- Military applications.
Signal processing.
Target acquisition.
Radar
radar.
Radar targets
Radar
Radar -- Military applications
Signal processing
Target acquisition
compressed sensing.
military radar.
object detection.
radar target recognition.
Form Electronic book
Author Blacknell, David, editor.
Griffiths, H. (Hugh), 1956- editor.
ISBN 1849196869
9781849196864