Limit search to available items
Record 5 of 12
Previous Record Next Record
Book Cover
E-book

Title ELECTRONIC SKIN : SENSORS AND SYSTEMS
Published [S.l.] : RIVER PUBLISHERS, 2020

Copies

Description 1 online resource
Contents Preface xi -- Acknowledgement xv -- List of Contributors xvii -- List of Figures xxi -- List of Tables xxix -- List of Abbreviations xxxi -- 1 Electronic Skin Systems 1 Ali Ibrahim and Maurizio Valle 1.1 Introduction 1 -- 1.2 Integration of E-skin in iCub Robot 3 -- 1.2.1 E-skin on iCub Fingertips 3 -- 1.2.2 E-skin on iCub Palm 4 -- 1.2.3 E-skin on the iCub Forearm 4 -- 1.3 E-skin in Telemanipulation: Of the EU2020 TACTILITY Project 6 -- 1.4 E-skin in Upper Limb Prostheses 7 -- 1.4.1 Piezoelectric-Based E-Skin 8 -- 1.4.2 Piezoresistive-Based E-Skin 8 -- 1.5 Conclusion 10 References 10 -- 2 Artificial Tactile Sensing and Electronic-Skin Technologies 13 Hoda Fares and Maurizio Valle 2.1 Introduction 14 -- 2.2 SENSE of Touch 14 -- 2.3 Artificial Skin: Concept and Evolution 15 -- 2.3.1 Understanding the Human Skin Physiology 15 -- 2.3.2 Artificial Skins 20 -- 2.4 E-Skin Systems 24 -- 2.4.1 Transduction Mechanisms 26 -- 2.4.2 Tactile Sensing Applications: Robotic and Prosthetic Hands 30 -- 2.4.2.1 Tactile sensors in commercial robotic hands 30 -- 2.4.2.2 Tactile sensory systems in prosthetics hands 32 -- 2.5 Requirements and Challenges 33 -- 2.6 Conclusion and Perspectives 34 References 35 -- 3 Tactile Sensors for Smart Human-Object Interactions: Devices and Technologies 47 Andrea Adami and Leandro Lorenzelli 3.1 Introduction 47 -- 3.2 Technologies and Devices 51 -- 3.2.1 Fabrication Technologies 51 -- 3.2.2 Tactile Sensor Devices 54 -- 3.2.2.1 Piezoresistive and resistive MEMS 54 -- 3.2.2.2 Capacitive 57 -- 3.2.2.3 Piezoelectric 60 -- 3.2.2.4 Other sensing techniques 62 -- 3.2.2.5 Recent trends 63 -- 3.3 Conclusions 65 Acknowledgements 65 References 65 -- 4 Optical-based Technologies for Artificial Soft Tactile Sensing 73 Matteo Lo Preti, Massimo Totaro, Egidio Falotico and Lucia Beccai 4.1 Introduction 74 -- 4.2 Optical-based Tactile Sensors 75 -- 4.2.1 Basic Optical Principles 76 -- 4.2.2 Pressure and Strain Optical Sensing 77 -- 4.3 Examples of Optical-based Tactile Sensors 80
5 Physical Contact Localization with Artificial Intelligence and Large-Area Fiber Bragg Grating Tactile Sensors for Collaborative Biorobotics 101 Tamás Czimmermann, Luca Massari, Jessica D'Abbraccio, Giuseppe Terruso, Martina Zaltieri, Giulia Fransvea, Andrea Aliperta, Eduardo Palermo, Emiliano Schena, Edoardo Sinibaldi and Calogero Maria Oddo 5.1 Introduction 102 -- 5.2 Materials and Methods 102 -- 5.2.1 FBG-based Sensing Skin 103 -- 5.2.2 Experimental Platform and Datasets 104 -- 5.2.3 Neural Network Structures 107 -- 5.3 Results 108 -- 5.4 Discussion and Conclusion 110 References 111 -- 6 Efficient Algorithms for Embedded Tactile Data Processing 113 Hamoud Younes, Mohamad Alameh, Ali Ibrahim, Mostafa Rizk and Maurizio Valle 6.1 Introduction 113 -- 6.2 Tactile Data Processing Algorithms 115 -- 6.2.1 Data Preprocessing 115 -- 6.2.2 Classification and Regression 117 -- 6.2.2.1 Machine learning 117 -- 6.2.2.2 Deep learning 123 -- 6.3 Embedded Processing System 124 -- 6.3.1 Hardware Platforms 124 -- 6.4 Case Study: Touch Modality Classification 128 -- 6.4.1 Experimental Setup 129 -- 6.4.2 Implementation Details 130 -- 6.5 Conclusion 131 References 132 -- 7 Approximate Arithmetic Circuits for Energy Efficient Data Processing in Electronic Skin 139 Mario Osta, Ali Ibrahim and Maurizio Valle 7.1 Introduction 139 -- 7.2 Approximate Computing for Low-Pass Fir Filters 141 -- 7.3 Approximate Filters for E-skin 143 -- 7.4 Approximate Computing for Embedded Machine Learning 144 -- 7.4.1 Approximate Arithmetic Circuits 144 -- 7.4.2 Approximate Memory 146 -- 7.4.3 Quantization 147 -- 7.5 Approximate Embedded Machine Learning for E-skin 147 -- 7.5.1 Tensorial Kernel Approach 148 -- 7.5.2 Coordinate Rotational Digital Computer Circuits 148 -- 7.5.2.1 CORDIC algorithm 149 -- 7.5.2.2 Approximate CORDIC implementation 149 -- 7.5.3 Singular Value Decomposition 151 -- 7.5.3.1 SVD algorithm 151 -- 7.5.3.2 Approximate SVD 152 -- 7.6 Discussion and Conclusion 154 -- References 155 -- 8 Optical Links for Sensor Data Communication Systems 163 Andrea De Marcellis, Elia Palange, Guido Di Patrizio Stanchieri and Marco Faccio 8.1 Introduction 164
9 Artificial Skin and Electrotactile Stimulation for Advanced Tactile Feedback in Myoelectric Prostheses 197 Lucia Seminara, Matija Strbac, Youssef Amin, Maurizio Valle and Strahinja Dosen 9.1 Introduction 198 -- 9.2 High-Density Sensing and Stimulation 200 -- 9.3 Electronic Skin Systems for Prosthetics 203 -- 9.3.1 Biomimetic e-skins for Prosthetic Systems 203 -- 9.3.2 Sense of Touch in Prosthetics: Case Studies 212 -- 9.3.3 Conclusive Remarks 218 -- 9.4 Electrotactile Stimulation for Sensory Feedback 219 -- 9.4.1 Electrotactile Stimulation Hardware 219 -- 9.4.2 Multiarray Electrodes and Electrode/Skin Interface 221 -- 9.4.3 Electrotactile Feedback From Myoelectric Prostheses 222 -- 9.5 Discussion 224 -- 9.6 -- Conclusions 227 -- References 228 -- Index 237 -- About the Editors 239
4.3.1 Single Optical Waveguide Sensor 80 -- 4.3.2 Bundle Optical Waveguide System 82 -- 4.3.3 Continuum Optical Waveguide Skin 84 -- 4.4 Signal Processing Approaches for Continuum Optical Waveguide Skins 85 -- 4.4.1 Analytical Methods 86 -- 4.4.2 Machine Learning Methods 87 -- 4.4.3 Case Study: Distributed Mechanical Sensing in a Soft Optical Skin 91 -- 4.5 Conclusion 94 -- References 96
8.2 The Optical Communication Link: Principles, Data Coding, Architectures, and Devices 167 -- 8.3 Technical Solutions and Implementations of Optical Links 169 -- 8.3.1 Description of the Digital Architectures for the Coding and Decoding Processes of the Sensor Data 170 -- 8.3.2 Description of the Analogue Circuits for Sensor Signal Conditioning 176 -- 8.4 Examples of Applications of Optical Communication Links for Sensory Systems 179 -- 8.4.1 Optical Fiber Link for Prosthetics Developed by Discrete Commercial Components and Devices 179 -- 8.4.2 Optical Wireless Communication Integrated System for Implanted Biotelemetry Applications 182 -- 8.5 -- Conclusion 187 -- References 188
Summary Considerable amount of effort has been devoted, over the recent years, towards the development of electronic skin (e-skin) for many application domains such as prosthetics, robotics, and industrial automation. Electronic Skin: Sensors and Systems focuses on the main components constituting the e-skin system. The e-skin system is based on: i) sensing materials composing the tactile sensor array, ii) the front end electronics for data acquisition and signal conditioning, iii) the embedded processing unit performing tactile data decoding, and iv) the communication interface in charge of transmitting the sensors data for further computing. Technical topics discussed in the book include: * Tactile sensing material; * Electronic Skin systems; * Embedded computing and tactile data decoding; * Communication systems for tactile data transmission; * Relevant applications of e-skin system; The book takes into account not only sensing materials but it also provides a thorough assessment of the current state of the art at system level. The book addresses embedded electronics and tactile data processing and decoding, techniques for low power embedded computing, and the communication interface. Electronic Skin: Sensors and Systems is ideal for researchers, Ph.D. students, academic staff and Masters/research students in sensors/sensing systems, embedded systems, data processing and decoding, and communication systems
Notes Ali Ibrahim, Maurizio Valle
Subject Signal processing -- Digital techniques.
Tactile sensors.
Robots -- Kinematics.
Robotics.
Robotics
SCIENCE / Energy
TECHNOLOGY / Electronics / Microelectronics
Robotics
Robots -- Kinematics
Tactile sensors
Form Electronic book
Author Ibrāhīm, ʻAlī, editor.
Valle, Maurizio, editor.
ISBN 9788770222150
8770222150
9781003338062
1003338062
9781000793796
1000793796
9781000796957
1000796957