Limit search to available items
Record 8 of 11
Previous Record Next Record
Book Cover
E-book
Author Otaduy, Miguel A.

Title High fidelity haptic rendering / Miguel A. Otaduy and Ming C. Lin
Edition First edition
Published [San Rafael, Calif.] : Morgan & Claypool Publishers, [2006]
©2006
Online access available from:
Synthesis Digital Library    View Resource Record  

Copies

Description 1 online resource (vii, 103 pages)
Series Synthesis lectures in computer graphics and animation ; #2
Synthesis lectures in computer graphics and animation (Online) ; #2
Contents Fundamentals of haptic rendering -- Six-DoF haptic rendering methodologies -- Collision detection methods -- Haptic texture rendering -- Future directions
Summary The human haptic system, among all senses, provides unique and bidirectional communication between humans and their physical environment. Yet, to date, most human-computer interactive systems have focused primarily on the graphical rendering of visual information and, to a lesser extent, on the display of auditory information. Extending the frontier of visual computing, haptic interfaces, or force feedback devices, have the potential to increase the quality of human-computer interaction by accommodating the sense of touch. They provide an attractive augmentation to visual display and enhance the level of understanding of complex data sets. They have been effectively used for a number of applications including molecular docking, manipulation of nano-materials, surgical training, virtual prototyping, and digital sculpting. Compared with visual and auditory display, haptic rendering has extremely demanding computational requirements. In order to maintain a stable system while displaying smooth and realistic forces and torques, high haptic update rates in the range of 500 1000 Hz or more are typically used. Haptics present many new challenges to researchers and developers in computer graphics and interactive techniques. Some of the critical issues include the development of novel data structures to encode shape and material properties, as well as new techniques for geometry processing, data analysis, physical modeling, and haptic visualization
Bibliography Includes bibliographical references (pages 87-102)
Notes Print version record
Subject Haptic devices.
Human-computer interaction.
Tactile sensors.
Touch.
Virtual reality.
Form Electronic book
Author Lin, Ming C.
ISBN 1598291149 (paperback)
1598291157
9781598291148 (paperback)
9781598291155