Description 
x, 353 pages : illustrations ; 24 cm 
Contents 
1. Symmetry  2. eyE s'dniM eht ni yrtemmyS  3. Never forget this in the midst of your equations  4. The povertystricken mathematician  5. The romantic mathematician  6. Groups  7. Symmetry rules  8. Who's the most symmetrical of them all?  9. Requiem for a romantic genius  App. 1. Card puzzle  App. 2. Solving a system of two linear equations  App. 3. Diophantus's solution  App. 4. A diophantine equation  App. 5. Tartaglia's verses and formula  App. 6. Adriaan van Roomen's challenge  App. 7. Properties of the roots of quadratic equations  App. 8. The Galois family tree  App. 9. The 1415 puzzle  App. 10. Solution to the matches problem 
Summary 
"Over the millennia, mathematicians solved progressively more difficult algebraic equations until they came to what is known as the quintic equation. For several centuries it resisted solution, until two mathematical prodigies independently discovered that it could not be solved by the usual methods, thereby opening the door to group theory. These young geniuses, a Norwegian named Niels Henrik Abel and a Frenchman named Evariste Galois, both died tragically. Galois, in fact, spent the night before his fatal duel (at the age of twenty) scribbling another brief summary of his proof, at one point writing in the margin of his notebook "I have no time."" 

"The story of the equation that couldn't be solved is a story of brilliant mathematicians and a fascinating account of how mathematics illuminates a wide variety of disciplines. In this book, Mario Livio shows in an easily accessible way how group theory explains the symmetry and order of both the natural and the humanmade worlds."BOOK JACKET 
Bibliography 
Includes bibliographical references and index 
Subject 
Galois, Évariste, 18111832.


Group theory  History.


Galois theory  History.


Symmetric functions  History.


Symmetry  Mathematics  History.


Diophantine analysis  History.

LC no. 
2005044123 
ISBN 
0743258207 
