Limit search to available items
Book Cover
E-book

Title Printable solar cells / edited by Nurdan Demirci Sankir and Mehmet Sankir
Published Hoboken, NJ : John Wiley & Sons, Inc., 2017

Copies

Description 1 online resource
Contents Cover; Title Page; Copyright Page; Contents; Preface; Part I Hybrid Materials and Process Technologies for Printable Solar Cells; 1 Organic and Inorganic Hybrid Solar Cells; 1.1 Introduction; 1.2 Organic/Inorganic Hybrid Solar Cells; 1.2.1 Introduction to Hybrid Solar Cells; 1.2.2 Hybrid Solar Cells; 1.2.2.1 Operational Principles of Bulk Heterojunction Hybrid Solar Cells; 1.2.2.2 Bulk Heterojunction Hybrid Solar Cells; 1.2.2.3 Bilayer Heterojunction Hybrid Solar Cells; 1.2.2.4 Inverted-Type Hybrid Bulk Heterojunction Solar Cells; 1.2.2.5 Dye-Sensitized Solar Cells
1.2.2.6 Perovskite Solar Cells1.3 Conclusion; References; 2 Solution Processing and Thin Film Formation of Hybrid Semiconductors for Energy Applications; 2.1 Physical Chemical Principles of Film Formation by Solution Processes: From Suspensions of Nanoparticles and Solutions to Nucleation, Growth, Coarsening and Microstructural Evolution of Films; 2.2 Solution-Processing Techniques for Thin Film Deposition; 2.2.1 Spin Coating; 2.2.2 Doctor Blade; 2.2.3 Slot-Die Coating; 2.2.4 Spray Coating
2.3 Properties and Characterization of Thin Films: Transport, Active and Electrode Layers in Thin Film Solar Cells2.4 Understanding the Crystallization Processes in Hybrid Semiconductor Films: Hybrid Perovskite as a Model; 2.4.1 Thermal Transitions Revealed by DSC; 2.4.2 Heat Transfer Processes in a Meso-Superstructured Perovskite Solar Cell; 2.4.3 Effect of the Annealing Process on Morphology and Crystalline Properties of Perovskite Films
2.4.4 Role of Precursor Composition in the Crystallinity of Perovskite Films: Understanding the Role of Additives and Moisture in the Final Properties of Perovskite LayersReferences; 3 Organic-Inorganic Hybrid Solar Cells Based on Quantum Dots; 3.1 Introduction; 3.2 Polymer/QD Solar Cells; 3.2.1 Working Principle; 3.2.2 Device Parameters; 3.2.2.1 Open-Circuit Voltage (Voc); 3.2.2.2 Short-Circuit Current (Jsc); 3.2.2.3 Fill Factor (FF); 3.2.3 Device Structure; 3.2.4 Progress of Polymer/QD Solar Cells; 3.2.4.1 Device Based on Cd Compound; 3.2.4.2 Device Based on Pb Compound
3.2.4.3 Device Based on CuInS23.2.5 Strategy for Improved Device Performance; 3.2.5.1 QDs Surface Treatment; 3.2.5.2 In-Situ Synthesis of QDs; 3.2.5.3 Polymer End-Group Functionalization; 3.3 Outlooks and Conclusions; Acknowledgment; References; 4 Hole Transporting Layers in Printable Solar Cells; 4.1 Introduction; 4.2 Hole Transporting Layers in Organic Solar Cells; 4.2.1 Utility of Hole Transporting Layers; 4.2.1.1 Energy Level Alignment at the Interfaces and Effect on the Open-Circuit Voltage; 4.2.1.2 Definition of Device Polarity, Charge Transport and Use as Blocking Layer
Bibliography Includes bibliographical references and index
Notes Print version record and CIP data provided by publisher
Subject Solar cells -- Research
Solar cells -- Design and construction
Photovoltaic cells.
Photovoltaic power generation.
Perovskite (Mineral)
photovoltaic cells.
TECHNOLOGY & ENGINEERING -- Mechanical.
Perovskite (Mineral)
Photovoltaic cells
Photovoltaic power generation
Solar cells -- Design and construction
Solar cells -- Research
Form Electronic book
Author Demirci Sankir, Nurdan, editor
Sankir, Mehmet, editor
LC no. 2017010422
ISBN 9781523115044
1523115041
9781119283737
1119283736