Limit search to available items
Book Cover
E-book
Author Brandt, Anders

Title Noise and vibration analysis : signal analysis and experimental procedures / Anders Brandt
Published Chichester ; Hoboken, N.J. : Wiley, 2011
Online access available from:
Wiley Online Books    View Resource Record  

Copies

Description 1 online resource (xix, 438 pages) : illustrations
Contents 880-01 Front Matter -- Introduction -- Dynamic Signals and Systems -- Time Data Analysis -- Statistics and Random Processes -- Fundamental Mechanics -- Modal Analysis Theory -- Transducers for Noise and Vibration Analysis -- Frequency Analysis Theory -- Experimental Frequency Analysis -- Spectrum and Correlation Estimates Using the DFT -- Measurement and Analysis Systems -- Rotating Machinery Analysis -- Single-Input Frequency Response Measurements -- Multiple-Input Frequency Response Measurement -- Orthogonalization of Signals -- Advanced Analysis Methods -- Appendix A: Complex Numbers -- Appendix B: Logarithmic Diagrams -- Appendix C: Decibels -- Appendix D: Some Elementary Matrix Algebra -- Appendix E: Eigenvalues and the SVD -- Appendix F: Organizations and Resources -- Bibliography -- Index
880-01/(S Machine generated contents note: 1. Introduction -- 1.1. Noise and Vibration -- 1.2. Noise and Vibration Analysis -- 1.3. Application Areas -- 1.4. Analysis of Noise and Vibrations -- 1.4.1. Experimental Analysis -- 1.5. Standards -- 1.6. Becoming a Noise and Vibration Analysis Expert -- 1.6.1. Virtue of Simulation -- 1.6.2. Learning Tools and the Format of this Book -- 2. Dynamic Signals and Systems -- 2.1. Introduction -- 2.2. Periodic Signals -- 2.2.1. Sine Waves -- 2.2.2. Complex Sines -- 2.2.3. Interacting Sines -- 2.2.4. Orthogonality of Sines -- 2.3. Random Signals -- 2.4. Transient Signals -- 2.5. RMS Value and Power -- 2.6. Linear Systems -- 2.6.1. Laplace Transform -- 2.6.2. Transfer Function -- 2.6.3. Impulse Response -- 2.6.4. Convolution -- 2.7. Continuous Fourier Transform -- 2.7.1. Characteristics of the Fourier Transform -- 2.7.2. Frequency Response -- 2.7.3. Relationship between the Laplace and Frequency Domains -- 2.7.4. Transient versus Steady-state Response -- 2.8. Chapter Summary -- 2.9. Problems -- References -- 3. Time Data Analysis -- 3.1. Introduction to Discrete Signals -- 3.2. Sampling Theorem -- 3.2.1. Aliasing -- 3.2.2. Discrete Representation of Analog Signals -- 3.2.3. Interpolation and Resampling -- 3.3. Filters -- 3.3.1. Analog Filters -- 3.3.2. Digital Filters -- 3.3.3. Smoothing Filters -- 3.3.4. Acoustic Octave Filters -- 3.3.5. Analog RMS Integration -- 3.3.6. Frequency Weighting Filters -- 3.4. Time Series Analysi -- 3.4.1. Min- and Max-analysis -- 3.4.2. Time Data Integration -- 3.4.3. Time Data Differentiation -- 3.4.4. FFT-based Processing -- 3.5. Chapter Summary -- 3.6. Problems -- References -- 4. Statistics and Random Processes -- 4.1. Introduction to the Use of Statistics -- 4.1.1. Ensemble and Time Averages -- 4.1.2. Stationarity and Ergodicity -- 4.2. Random Theory -- 4.2.1. Expected Value -- 4.2.2. Errors in Estimates -- 4.2.3. Probability Distribution -- 4.2.4. Probability Density -- 4.2.5. Histogram -- 4.2.6. Sample Probability Density Estimate -- 4.2.7. Average Value and Variance -- 4.2.8. Central Moments -- 4.2.9. Skewness -- 4.2.10. Kurtosis -- 4.2.11. Crest Factor -- 4.2.12. Correlation Functions -- 4.2.13. Gaussian Probability Distribution -- 4.3. Statistical Methods -- 4.3.1. Hypothesis Tests -- 4.3.2. Test of Normality -- 4.3.3. Test of Stationarity -- 4.4. Quality Assessment of Measured Signals -- 4.5. Chapter Summary -- 4.6. Problems -- References -- 5. Fundamental Mechanics -- 5.1. Newton's Laws -- 5.2. Single Degree-of-freedom System (SDOF) -- 5.2.1. Transfer Function -- 5.2.2. Impulse Response -- 5.2.3. Frequency Response -- 5.2.4. Q-factor -- 5.2.5. SDOF Forced Response -- 5.3. Alternative Quantities for Describing Motion -- 5.4. Frequency Response Plot Formats -- 5.4.1. Magnitude and Phase -- 5.4.2. Real and Imaginary Parts -- 5.4.3. Nyquist Plot -- Imaginary vs. Real Part -- 5.5. Determining Natural Frequency and Damping -- 5.5.1. Peak in the Magnitude of FRF -- 5.5.2. Peak in the Imaginary Part of FRF -- 5.5.3. Resonance Bandwidth (3 dB Bandwidth) -- 5.5.4. Circle in the Nyquist Plot -- 5.6. Rotating Mass -- 5.7. Some Comments on Damping -- 5.7.1. Hysteretic Damping -- 5.8. Models Based on SDOF Approximations -- 5.8.1. Vibration Isolation -- 5.8.2. Resonance Frequency and Stiffness Approximations -- 5.9. Two-degree-of-freedom System (2DOF) -- 5.10. Tuned Damper -- 5.11. Chapter Summary -- 5.12. Problems -- References -- 6. Modal Analysis Theory -- 6.1. Waves on a String -- 6.2. Matrix Formulations -- 6.2.1. Degree-of-freedom -- 6.3. Eigenvalues and Eigenvectors -- 6.3.1. Undamped System -- 6.3.2. Mode Shape Orthogonality -- 6.3.3. Modal Coordinates -- 6.3.4. Proportional Damping -- 6.3.5. General Damping -- 6.4. Frequency Response of MDOF Systems -- 6.4.1. Frequency Response from [M], [C], [K] -- 6.4.2. Frequency Response from Modal Parameters -- 6.4.3. Frequency Response from [M], [K], and ε -- Modal Damping -- 6.4.4. Mode Shape Scaling -- 6.4.5. Effect of Node Lines on FRFs -- 6.4.6. Antiresonance -- 6.4.7. Impulse Response of MDOF Systems -- 6.5. Time Domain Simulation of Forced Response -- 6.6. Chapter Summary -- 6.7. Problems -- References -- 7. Transducers for Noise and Vibration Analysis -- 7.1. Piezoelectric Effect -- 7.2. Charge Amplifier -- 7.3. Transducers with Built-In Impedance Converters, ÌEPE' -- 7.3.1. Low-frequency Characteristics -- 7.3.2. High-frequency Characteristics -- 7.3.3. Transducer Electronic Data Sheet, TEDS -- 7.4. Piezoelectric Accelerometer -- 7.4.1. Frequency Characteristics -- 7.4.2. Mounting Accelerometers -- 7.4.3. Electrical Noise -- 7.4.4. Choosing an Accelerometer -- 7.5. Piezoelectric Force Transducer -- 7.6. Impedance Head -- 7.7. Impulse Hammer -- 7.8. Accelerometer Calibration -- 7.9. Measurement Microphones -- 7.10. Microphone Calibration -- 7.11. Shakers for Structure Excitation -- 7.12. Some Comments on Measurement Procedures -- 7.13. Problems -- References -- 8. Frequency Analysis Theory -- 8.1. Periodic Signals -- The Fourier Series -- 8.2. Spectra of Periodic Signals -- 8.2.1. Frequency and Time -- 8.3. Random Processes -- 8.3.1. Spectra of Random Processes -- 8.4. Transient Signals -- 8.5. Interpretation of spectra -- 8.6. Chapter Summary -- 8.7. Problems -- References -- 9. Experimental Frequency Analysis -- 9.1. Frequency Analysis Principles -- 9.1.1. Nonparametric Frequency Analysis -- 9.2. Octave and Third-octave Band Spectra -- 9.2.1. Time Constants -- 9.2.2. Real-time versus Serial Measurements -- 9.3. Discrete Fourier Transform (DFT) -- 9.3.1. Fast Fourier Transform, FFT -- 9.3.2. DFT in Short -- 9.3.3. Basis of the DFT -- 9.3.4. Periodicity of the DFT -- 9.3.5. Properties of the DFT -- 9.3.6. Relation between DFT and Continuous Spectrum -- 9.3.7. Leakage -- 9.3.8. Picket-fence Effect -- 9.3.9. Time Windows for Periodic Signals -- 9.3.10. Time Windows for Random Signals -- 9.3.11. Oversampling in FFT Analysis -- 9.3.12. Circular Convolution and Aliasing -- 9.3.13. Zero Padding -- 9.3.14. Zoom FFT -- 9.4. Chapter Summary -- 9.5. Problems -- References -- 10. Spectrum and Correlation Estimates Using the DFT -- 10.1. Averaging -- 10.2. Spectrum Estimators for Periodic Signals -- 10.2.1. Autopower Spectrum -- 10.2.2. Linear Spectrum -- 10.2.3. Phase Spectrum -- 10.3. Estimators for PSD and CSD -- 10.3.1. Periodogram -- 10.3.2. Welch's Method -- 10.3.3. Window Correction for Welch Estimates -- 10.3.4. Bias Error in Welch Estimates -- 10.3.5. Random Error in Welch Estimates -- 10.3.6. Smoothed Periodogram Estimator -- 10.3.7. Bias Error in Smoothed Periodogram Estimates -- 10.3.8. Random Error in Smoothed Periodogram Estimates -- 10.4. Estimator for Correlation Functions -- 10.5. Estimator for Transient Signals -- 10.5.1. Windows for Transient Signals -- 10.6. Spectrum Estimation in Practice -- 10.6.1. Linear Spectrum Versus PSD -- 10.6.2. Example of a Spectrum of a Periodic Signal -- 10.6.3. Practical PSD Estimation -- 10.6.4. Spectrum of Mixed Property Signal -- 10.6.5. Calculating RMS Values in Practice -- 10.6.6. RMS From Linear Spectrum of Periodic Signal -- 10.6.7. RMS from PSD -- 10.6.8. Weighted RMS Values -- 10.6.9. Integration and Differentiation in the Frequency Domain -- 10.7. Multi-channel Spectral Analysis -- 10.7.1. Matrix Notation for MIMO Spectral Analysis -- 10.7.2. Arranging Spectral Matrices in MATLAB/Octav -- 10.8. Chapter Summary -- 10.9. Problems -- References -- 11. Measurement and Analysis Systems -- 11.1. Principal Design -- 11.2. Hardware for Noise and Vibration Analysis -- 11.2.1. Signal Conditioning -- 11.2.2. Analog-to-digital Conversion, ADC -- 11.2.3. Practical Issues -- 11.2.4. Hardware Specifications -- 11.2.5. Transient (Shock) Recording -- 11.3. FFT Analysis Software -- 11.3.1. Block Processing -- 11.3.2. Data Scaling -- 11.3.3. Triggering -- 11.3.4. Averaging -- 11.3.5. FFT Setup Parameters -- 11.4. Chapter Summary -- 11.5. Problems -- References -- 12. Rotating Machinery Analysis -- 12.1. Vibrations in Rotating Machines -- 12.2. Understanding Time-Frequency Analysis -- 12.3. Rotational Speed Signals (Tachometer Signals) -- 12.4. RPM Maps -- 12.4.1. Waterfall Plot -- 12.4.2. Color Map Plot -- 12.5. Smearing -- 12.6. Order Tracks -- 12.7. Synchronous Sampling -- 12.7.1. DFT Parameters after Resampling -- 12.8. Averaging Rotation-speed-dependent Signals -- 12.9. Adding Change in RMS with Time -- 12.10. Parametric Methods -- 12.11. Chapter Summary -- 12.12. Problems -- References -- 13. Single-input Frequency Response Measurements -- 13.1. Linear Systems -- 13.2. Determining Frequency Response Experimentally -- 13.2.1. Method 1 -- the H1 Estimator -- 13.2.2. Method 2 -- the H2 Estimator -- 13.2.3. Method 3 -- the Hc Estimator -- 13.3. Important Relationships for Linear Systems -- 13.4. Coherence Function -- 13.5. Errors in Determining the Frequency Response -- 13.5.1. Bias Error in FRF Estimates -- 13.5.2. Random Error in FRF Estimates -- 13.5.3. Bias and Random Error Trade-offs -- 13.6. Coherent Output Power -- 13.7. Coherence Function in Practice -- 13.7.1. Non-random Excitation -- 13.8. Impact Excitation -- 13.8.1. Force Signal
Summary "Noise and Vibration Analysis adopts a practical learning approach, building upon two existing class-note type books that have been used by the author for 10 years of teaching two academic courses"-- Provided by publisher
Bibliography Includes bibliographical references and index
Notes English
Print version record
Subject Vibration -- Mathematical models
Noise -- Mathematical models
Acoustical engineering.
Stochastic analysis.
Signal processing.
TECHNOLOGY & ENGINEERING -- Drafting & Mechanical Drawing.
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Acoustical engineering
Noise -- Mathematical models
Signal processing
Stochastic analysis
Vibration -- Mathematical models
Vibrations -- Modèles mathématiques.
Bruit -- Modèles mathématiques.
Traitement du signal.
Analyse stochastique.
Génie acoustique.
Vibrationer -- matematiska modeller.
Buller -- matematiska modeller.
Ljudteknik.
Stokastiska processer.
Signalbehandling.
Form Electronic book
LC no. 2010039788
ISBN 9780470978177
0470978171
9780470978160
0470978163
9780470978115
0470978112
1283100932
9781283100939
9786613100931
6613100935