Description |
1 online resource (xxv, 748 pages) : illustrations |
Contents |
Note continued: 3.1.1.6 Tertiary-Alkyl Resorcinols -- 3.1.1.7 Cycloaliphatic Substituted Resorcinols -- 3.1.1.8 Allyl and Vinyl Resorcinols -- 3.1.1.9 Prenylated Resorcinols -- 3.1.2 Aralkyl Resorcinols -- References -- 3.2 Resorcinol Ethers -- 3.2.1 Alkyl Ethers of Resorcinol -- 3.2.1.1 Monoalkyl Ethers -- 3.2.1.2 Resorcinol Dimethyl Ether -- 3.2.1.3 Allyl Ether Compounds -- 3.2.1.4 Hydroxyethyl Ethers of Resorcinol -- 3.2.2 Aromatic Ethers of Resorcinol -- References -- 3.3 Resorcinol Esters -- 3.3.1 Aliphatic Monoesters -- 3.3.2 Aliphatic Diesters -- 3.3.3 Monoaryl Esters -- 3.3.4 Dibenzoate Esters -- 3.3.5 Carbonate Esters -- References -- 3.4 Halo Resorcinols -- 3.4.1 Fluorinated Resorcinols -- 3.4.1.1 Monofluoro Resorcinols -- 3.4.1.2 Fluoracyl Resorcinols -- 3.4.1.3 Fluoro Resorcinol Ethers -- 3.4.2 Chlorinated Resorcinols -- 3.4.2.1 2-Chloro-Substituted Resorcinols -- 3.4.2.2 4-Chloro-Substituted Resorcinols -- 3.4.2.3 Monochloro Alkyl Resorcinols -- 3.4.2.4 4,6-Dichlororesorcinol -- 3.4.2.5 2,4,6-Trichlororesorcinol -- 3.4.3 Bromoresorcinols -- 3.4.3.1 4-Bromoresorcinol -- 3.4.3.2 4,6-Dibromoresorcinol -- 3.4.3.3 2,4,6-Tribromoresorcinol -- 3.4.3.4 Dibromo Derivatives of Resorcinol Ethers -- 3.4.4 Iodo Resorcinols -- 3.4.4.1 Monoiodo Resorcinol -- 3.4.4.2 4,6-Diiodo Resorcinol -- 3.4.4.3 2,4,6-Triio do Resorcinol -- 3.4.5 Properties of Halo Resorcinols -- References -- 3.5 Aldehyde and Ketone Compounds -- 3.5.1 Resorcinol Aldehydes -- 3.5.1.1 2,4-Dihydroxyb enzaldehyde -- 3.5.1.2 2,6-Dihydroxyb enzaldehyde -- 3.5.1.3 2,4-Dialkoxyb enzaldehydes -- 3.5.1.4 Aldehyde Compounds from Alkylresorcinols -- 3.5.2 Resorcinol Ketones -- 3.5.2.1 Acylresorcinols -- 3.5.2.2 2-Acetylresorcinol or 2,6-Dihydroxyacetophenone -- 3.5.2.3 4-Acetylresorcinol or 2,4-Dihydroxyacetophenone -- 3.5.2.4 Diacetylresorcinols -- References |
|
Note continued: 3.6 Carboxylic Acid Derivatives -- 3.6.1 & beta;-Resorcylic Acid (2,4-Dihydroxybenzoic Acid) -- 3.6.1.1 Esters of & beta;-Resorcylic Acid -- 3.6.1.2 Ether Derivatives of BRA -- 3.6.2 & gamma;-Resorcylic Acid -- 3.6.2.1 Derivatives of & gamma;-Resorcylic Acid -- 3.6.3 Resorcinol Dicarboxylic Acids -- 3.6.4 Resorcinol Dioxydiacetic Acid Compounds -- 3.6.5 Glyoxylic Acid Derivatives of Resorcinol -- References -- 3.7 Sulfur Compounds -- 3.7.1 Sulfonic Acid Derivatives of Resorcinol -- 3.7.2 Thiobisresorcinols -- 3.7.3 Diresorcyl Sulfoxide -- 3.7.4 Tioxolone and Thio Derivatives -- 3.7.5 Bisulfite Compound -- 3.7.6 Vinylsulfonic Acid Ester -- References -- 3.8 Nitro and Nitrosoresorcinols -- 3.8.1 Nitroresorcinols -- 3.8.1.1 Mono -Nitrores orcinol -- 3.8.1.2 Dinitroresorcinols -- 3.8.1.3 Trinitroresorcinol -- 3.8.1.4 Octanitroresorcinol Derivatives -- 3.8.2 Nitrosoresorcinols -- 3.8.2.1 4-Nitrosoresorcinol -- 3.8.2.2 2,4-Dinitrosoresorcinol -- References -- 3.9 Aminoresorcinols -- 3.9.1 Mono Aminoresorcinols -- 3.9.1.1 2-Aminoresorcinol -- 3.9.1.2 4-Aminoresorcinol -- 3.9.2 Diaminoresorcinols -- 3.9.3 m-Aminophenol (or) 3-Aminoresorcinol -- 3.9.4 m-Hydroxy Diphenylamines -- 3.9.5 Morpholinomethyl Resorcinols -- 3.9.6 Amino Ether Derivatives of Resorcinol -- References -- 4 Special Compounds -- 4.1 Flavans and Spirodichromans -- 4.1.1 Resorcinol-Ketone Reactions -- 4.1.2 Reaction of Resorcinol with Acetone -- 4.1.3 Resorcinol-Unsaturated Ketones Reaction -- 4.1.4 Resorcinol-Cyclic Ketones Reaction -- 4.1.5 Applications of Flavans and Spirodichromans -- 4.1.5.1 Rubber Compounding Additive -- 4.1.5.2 Curing Agents for Epoxy Resins -- 4.1.5.3 Photoresist Material -- References -- 4.2 Coumarins and Chromanones -- 4.2.1 Introduction -- 4.2.2 Reaction of Resorcinol with & alpha; & beta;-Unsaturated Carboxylic Acids |
|
Note continued: 4.2.3 Reaction with & alpha; & beta;-Unsaturated Carboxylic Acid Esters -- 4.2.4 Hydroxycoumarins from Resorcinol -- 4.2.5 Reaction of Resorcinol with Malic Acid -- 4.2.6 Reaction with Ethyl Acetoacetate -- 4.2.7 Substituent Effect of Resorcinol on Pechmann Reaction [14] -- 4.2.8 Applications of Hydroxycoumarin and Chromanone Derivatives -- 4.2.9 Furocoumarins or Psoralens -- References -- 4.3 Resorcinarenes -- 4.3.1 Introduction -- 4.3.2 Synthesis of Resorcinarenes -- 4.3.3 Mechanism of Resorcinarene Formation -- 4.3.4 Resorcinarene Containing Methylene Bridges -- 4.3.5 Properties of Resorcinarenes -- 4.3.6 Resorcinarene Reactions -- 4.3.6.1 Bromination Reaction -- 4.3.6.2 Aminomethylation Reaction -- 4.3.7 Applications of Resorcinarenes -- 4.3.7.1 Resorcinarenes in Nanotechnology -- 4.3.8 Cavitands and Carcerands -- References -- 4.4 Dihydroresorcinol -- 4.4.1 Introduction -- 4.4.2 Synthesis of Dihydroresorcinol -- 4.4.3 Properties of Dihydroresorcinol -- 4.4.4 Derivatives of 1,3-Cyclohexanedione -- 4.4.4.1 Alkyl Substituted Dihydroresorcinol -- 4.4.4.2 2-Bromo and 2,2-Dibromo-1,3-Cyclohexanediones -- 4.4.4.3 2-Acetyl Dihydroresorcinol -- 4.4.4.4 2-Chloro and 2,2-Dichloro-1,3-Cyclohexanediones -- 4.4.4.5 2-Allyl Dihydroresorcinol -- 4.4.5 Reactions of Dihydroresorcinol -- 4.4.5.1 Reaction with Aldehydes -- 4.4.5.2 Formation of Ethers -- 4.4.5.3 Reaction with Benzoyl Halides -- 4.4.5.4 Methyl Vinyl Ketone Reaction -- 4.4.5.5 Reaction with Vinyl Ethers -- 4.4.5.6 Synthesis of Indole Derivatives from DHR -- 4.4.5.7 Reaction with Ammonia and Primary Amines -- 4.4.5.8 Reaction with PCl3 and POCl3 Compounds -- 4.4.5.9 Mannich-Type Compounds -- 4.4.5.10 General Reactions of DHR -- 4.4.6 Applications of 1,3-Cyclohexanedione Derivatives -- 4.4.6.1 Manufacture of Herbicides -- 4.4.6.2 Pharmaceuticals |
|
Note continued: 4.4.6.3 Building Block for Steroids and Terpenoids -- 4.4.6.4 Chemical Intermediates -- 4.4.6.5 Synthesis of Drugs for Pain Treatment -- References -- 5 Resorcinol Based Resins and Applications -- 5.1 Resorcinol-Aldehyde Resins -- 5.1.1 Introduction -- 5.1.2 Resorcinol-Formaldehyde (RF) Resins -- 5.1.2.1 Resorcinol Structure and Reactivity for Formaldehyde Reaction -- 5.1.2.2 Uncatalyzed Reaction of Resorcinol with Formaldehyde -- 5.1.2.3 Determination of Resorcinol Reactivity on Varying pH -- 5.1.2.4 Base Catalyzed Resorcinol-Formaldehyde Reaction -- 5.1.2.5 Analytical Methods for RF Resins Analysis -- 5.1.2.6 Stability of RF Resin in Alkaline Conditions -- 5.1.2.7 Resorcinolic Novolak Resins from Aliphatic Aldehydes -- 5.1.2.8 Modified Resorcinolic Novolak Resins with Phenolic Derivatives -- References -- 5.2 Resorcinolic Resins in Steel Cords Adhesion -- 5.2.1 Introduction -- 5.2.2 Brass Plated Steel Cord to Rubber Adhesion -- 5.2.2.1 Factors Affecting the Brass Plated Steel Cord Adhesion -- 5.2.3 Rubber Compound Formulation and Adhesion Testing. -- 5.2.3.1 Preparation of Rubber Masterbatch -- 5.2.3.2 Determination of Cure, Mechanical and Adhesion Properties -- 5.2.3.3 Mixing Rubber Compounds -- 5.2.4 Advantages of Resorcinolic Resins in Steel Skim Rubber Compounds -- 5.2.4.1 Methylene Donors in Rubber Compounds -- 5.2.4.2 Use of Cobalt Salts -- 5.2.4.3 Methylene Acceptor/Donor Ratios -- 5.2.4.4 Role of Resorcinolic Bonding Systems in Steel Cord Adhesion -- 5.2.4.5 Reaction of Resorcinol with HMMM -- 5.2.5 Different Resorcinolic Chemistry for Improving Steel Wire Adhesion -- 5.2.5.1 Use of Resorcinol -- 5.2.5.2 Resorcinol-Formaldehyde Novolak Resins -- 5.2.5.3 Alkyl Substituted Resorcinolic Novolak Resins -- 5.2.5.4 Alkyl Phenol Modified Resorcinolic Novolak Resins -- 5.2.5.5 Aralkyl Modified Resorcinol Novolak Resins |
|
Note continued: 5.2.5.6 Non-volatile Resorcinolic Resins -- 5.2.5.7 Non-fuming and Non-formaldehyde Resorcinolic Resins -- 5.2.5.8 Resorcinolic Derivative in Rubber Compounds -- 5.2.5.9 Lower Molecular Weight Resorcinolic Compound -- 5.2.6 Zinc Plated Steel Cord Adhesion -- 5.2.7 Summary and Outlook -- References -- 5.3 Aerogels -- 5.3.1 Introduction -- 5.3.2 Organic Aerogels -- 5.3.2.1 Resorcinol-Formaldehyde Aerogel Preparation -- 5.3.2.2 Process for the Synthesis of Resorcinol Aerogel [6] -- 5.3.2.3 Morphology of Resorcinol Aerogels -- 5.3.2.4 Organic Aerogel Microspheres -- 5.3.2.5 Applications of Organic Aerogels -- 5.3.3 Carbon Aerogels -- 5.3.3.1 Carbon Aerogel Synthesis and Properties -- 5.3.3.2 Carbon Aerogels as Electrodes in Aerocapacitors -- 5.3.3.3 Mesoporous Carbon Aerogels -- 5.3.3.4 Gas Diffusion Electrodes -- 5.3.3.5 Applications of Carbon Aerogels -- 5.3.4 Carbon Foam/Carbon Paper Composites -- 5.3.5 Metal Doped Carbon Aerogels -- 5.3.5.1 & beta;-Resorcylic Acid in Metal Doped Carbon Aerogels Synthesis -- 5.3.5.2 Metal Doped Aerogels from Resorcinol -- 5.3.6 Summary and Outlook -- References -- 6 Resorcinol Formaldehyde Latex (RFL) Adhesives and Applications -- 6.1 Adhesive Formulations, Testing and Mechanism -- 6.1.1 Introduction -- 6.1.2 Resorcinol Formaldehyde Latex (RFL) Adhesive Formulations -- 6.1.2.1 Preparation of RFL Solutions -- 6.1.2.2 First Step Resorcinol-Formaldehyde Reaction Chemistry -- 6.1.2.3 RFL System or Final Formulation -- 6.1.3 Factors Affecting the RFL Performance -- 6.1.3.1 Method of RFL Preparation -- 6.1.3.2 Resorcinol-Formaldehyde (R/F) Ratio -- 6.1.3.3 Maturing of RFL on Adhesion -- 6.1.3.4 Effect of pH on Adhesion -- 6.1.3.5 Choice of Latex -- 6.1.3.6 RF Resin to Latex Ratio -- 6.1.4 Fiber Dipping and Heat Treating Conditions -- 6.1.4.1 RFL Dip Pickup -- 6.1.4.2 Heat Treatment of RFL Dipped Fibers or Cords |
|
Note continued: 6.1.5 Adhesion Testing of RFL Treated Fibers or Cords -- 6.1.5.1 Adhesion Test Methods -- 6.1.5.2 H-Test Adhesion Method -- 6.1.5.3 Peel Adhesion Test Method -- 6.1.5.4 Cord Stability Test -- 6.1.6 Adhesion Mechanisms for RFL Systems -- 6.1.6.1 Mechanical Interlocking -- 6.1.6.2 Diffusion -- 6.1.6.3 Primary Chemical Bonding -- 6.1.6.4 Secondary Chemical Bonding -- References -- 6.2 Bonding Nylons to Rubber Compounds -- 6.2.1 Nylon Chemistry -- 6.2.2 Application of Nylon-6 and Nylon-66 in Tire Cords -- 6.2.3 RFL Chemistry and Nylon Bonding -- 6.2.4 Rubber Compounding Test Results -- References -- 6.3 Bonding Polyester to Rubber Compounds -- 6.3.1 Polyester Chemistry -- 6.3.2 Application of RFL in Polyester to Rubber Compounds Adhesion -- 6.3.3 Single Step RFL Formulation and PET Adhesion -- 6.3.3.1 Dimerization of Isocyanates -- 6.3.3.2 Trimerization of Isocyanates -- 6.3.3.3 Formation of Carbodiimides from Isocyanates -- 6.3.4 Chemistry and Mechanisms of Vulcabond-E Adhesion -- 6.3.5 Resorcinolic Derivatives in Single Dip RFL Formulations -- 6.3.6 Adhesion Difficulties of Single Step RFL Dip for Polyesters -- 6.3.7 Different Approaches in Double Dip Adhesives for Polyesters -- 6.3.7.1 Epoxy Resin in the Sub-Coat Formulation -- 6.3.7.2 Silane and Aliphatic Epoxy Resins in the Sub-Coat -- 6.3.7.3 Mixed Silanes in the Polyester Sub-Coat -- 6.3.7.4 Isocyanate Chemistry in the Sub-Coat -- 6.3.7.5 Non-Epoxy Activation of Polyester Surface -- 6.3.7.6 Epoxy Finish with Epoxy and Blocked Isocyanate in RFL -- 6.3.7.7 Flexibilizing RF Resin in RFL -- 6.3.8 Three Step Dip Process -- References -- 6.4 Bonding Aramid to Rubber Compounds -- 6.4.1 Aramid Chemistry and Properties -- 6.4.2 Aramid as Reinforcement in Rubber Compounds -- 6.4.3 Bonding Difficulties of Aramid Fibers to Rubber -- 6.4.4 Enhancing Aramid Adhesion -- 6.4.5 RFL Adhesive Systems for Aramid |
|
Note continued: 6.4.6 Aramid Adhesion with Nitrile and Neoprene Compounds -- References -- 6.5 Bonding Poly (Benzoxazole), PBO, Fibers with Rubber Compounds -- 6.5.1 PBO Chemistry and Properties -- 6.5.2 RFL Bonding of PBO Fibers with Rubbers -- References -- 6.6 Bonding Carbon Fibers -- 6.6.1 Carbon Fiber Chemistry -- 6.6.2 Synthesis of Carbon Fibers from PAN -- 6.6.3 Comparison of Fiber Properties -- 6.6.4 RFL Formulations for Carbon Fibers -- References -- 6.7 Bonding EPDM and Nitrile Rubber Compounds with Fibers -- 6.7.1 Ethylene-Propylene-Diene Monomer (EPDM) Rubbers -- 6.7.1.1 EPDM Rubbers in Hoses -- 6.7.1.2 EPDM Rubbers in Belts -- 6.7.1.3 Polyester Adhesion to EPDM Compounds -- 6.7.1.4 Aramid Adhesion with EPDM Compounds -- 6.7.2 Hydrogenated Nitrile Rubbers (HNBR) -- 6.7.2.1 HNBR Rubber Properties -- 6.7.3 RFL in Bonding Polyester to HNBR Compounds -- References -- 7 Resorcinol Based Polymers -- 7.1 Polyarylates -- 7.1.1 Introduction -- 7.1.2 Synthesis of Aromatic Polyesters or Polyarylates -- 7.1.2.1 Direct Esterification Method -- 7.1.2.2 Diacetate Method -- 7.1.2.3 Diphenyl Ester Process -- 7.1.2.4 Dicarboxylic Acid Chloride Methods -- 7.1.3 Structure and Properties of Polyarylates -- 7.1.3.1 Homopolyesters of Resorcinol -- 7.1.3.2 Copolyesters of Resorcinol and Properties -- 7.1.4 Blending of Resorcinol Polyarylates with Thermoplastics -- 7.1.5 Weatherable Polyesters from Resorcinol -- 7.1.6 Liquid Crystalline Polyesters from Resorcinol -- 7.1.7 Summary and Outlook -- References -- 7.2 Polycarbonates -- 7.2.1 Introduction -- 7.2.2 Resorcinol Monomer in Polycarbonates -- 7.2.3 General Methods of Polycarbonates Preparations -- 7.2.3.1 Melt Polycondensation Process -- 7.2.3.2 Solution Polycondensation Process -- 7.2.3.3 Interfacial Polycondensation Process -- 7.2.4 Homopolycarbonate from Resorcinol |
|
Note continued: 7.2.5 Copolycarbonates Containing Resorcinol -- 7.2.6 Blends of Resorcinol Copolymer with ABS and SAN Resins -- 7.2.7 Summary and Outlook -- References -- 7.3 Polyestercarbonates -- 7.3.1 Polycarbonates -- 7.3.2 Weathering Exposure and Polycarbonate Stability -- 7.3.3 Advantages of Resorcinol Polyarylates as UV Stabilizers -- 7.3.4 Poly(resorcinol arylates) and Polycarbonates -- 7.3.5 Generalized Copolyestercarbonate Synthesis and Properties -- 7.3.6 Copolyestercarbonates from Resorcinol Methods of Preparation -- 7.3.6.1 Interfacial Polymerization Process -- 7.3.6.2 Melt Polycondensation Process -- 7.3.7 UV Stabilization and Mechanism of Protection -- 7.3.8 Blends of Copolyestercarbonate with Poly(butylene terephthalate) -- 7.3.9 Fiber Reinforced Laminates Using Polyestercarbonate Resins -- 7.3.10 Commercial Applications of Resorcinol Based Polyestercarbonates -- 7.3.10.1 Sollx Film Properties -- 7.3.10.2 Weatherability and Gloss Properties of Sollx -- 7.3.10.3 Scratch Resistance Property -- 7.3.11 Sollx Applications -- 7.3.12 Summary and Outlook -- References -- 7.4 Polymers from Cyanate Esters -- 7.4.1 Introduction -- 7.4.2 Synthesis of Cyanate Ester Compounds and Resins -- 7.4.3 Properties of Resorcinol Cyanate Esters -- 7.4.4 Prepolymers of Resorcinol Dicyanate Ester -- 7.4.5 Curing of Cyanate Ester Resins -- 7.4.6 Neat Resin Mechanical Properties of Resorcinol Dicyanate -- 7.4.7 Thermal and Electrical Properties of Resorcinol Cyanate Resins -- 7.4.8 Carbon Fiber-Resorcinol Dicyanate Composite Properties -- 7.4.9 Summary and Outlook -- References -- 7.5 Poly(Benzoxazoles) -- 7.5.1 Introduction -- 7.5.2 Synthesis of 4,6-Diaminoresorcinol (DAR) -- 7.5.2.1 Synthesis of DAR from Dinitro Resorcinols -- 7.5.2.2 Synthesis of DAR Using Diazo Resorcinols -- 7.5.2.3 Synthesis of DAR from Diacetyl Resorcinol |
|
Note continued: 7.5.3 Stabilization of 4,6-Diaminoresorcinol -- 7.5.4 Synthesis of Poly(& rho;-Phenylene Benzobisoxazole) (PBO) -- 7.5.5 Spinning of Polymer and Fiber Formation -- 7.5.6 Poly(benzoxazole) Fiber Properties -- 7.5.7 Flammability Properties of PBO and Other Fibers -- 7.5.8 Thermal Properties of PBO Polymer -- 7.5.9 Poly(benzoxazole) Applications -- 7.5.10 Use of DAR in other PBO Polymers and Applications -- 7.5.11 Biscyclobutarene Monomer and Polymers -- 7.5.12 Dihydroxy-Pendant PBO Polymer -- 7.5.13 Summary and Outlook -- References -- 7.6 Poly(arylene ethers) -- 7.6.1 Introduction -- 7.6.2 General Methods of Poly(arylene ethers) Synthesis -- 7.6.3 Poly(cyanoaryl ethers) from Resorcinol -- 7.6.3.1 Synthesis of Poly(cyanoaryl ether) -- 7.6.3.2 Poly(cyanoarylene ether) from Cyclic Oligomers -- 7.6.3.3 Synthesis and Properties of Poly(cyanoarylene ethers) -- 7.6.4 Copoly(cyanoaryl ethers) -- 7.6.5 Blending of PEN-R with Thermoplastic Materials and Properties -- 7.6.6 PEN-R Based Molding Compounds and Properties -- 7.6.7 Performance Comparison of PEN-R versus PEEK Resin -- 7.6.8 Laminated Products and Properties -- 7.6.9 Applications of PEN-R Resin -- 7.6.10 Poly(arylether sulfones) and Poly(arylether ketones) -- 7.6.11 Arylether Phthalonitrile Monomers and Polymers -- 7.6.12 Bismaleimide Resins Containing Ether Bridges -- 7.6.13 Acetylene Terminated Poly(phenylene ethers) -- 7.6.14 Halogens Containing Poly(arylether) Compounds -- 7.6.15 Summary and Outlook -- References -- 7.7 Epoxy Resins -- 7.7.1 Introduction -- 7.7.2 Diglycidyl Ether Compounds (Di-epoxides) -- 7.7.2.1 Resorcinol Diglycidyl Ether (RDGE) -- 7.7.2.2 Diglycidyl Ether of 4-Benzoyl Resorcinol (BRDGE) -- 7.7.2.3 Diglycidyl Ether of Styryl Substituted Resorcinol -- 7.7.2.4 Diglycidyl Ether of Isopropyl-substituted Resorcinol -- 7.7.2.5 Diglycidyl Ether of Tribromo Resorcinol |
|
Note continued: 7.7.2.6 Diglycidyl Ether of 4-Vinyl Resorcinol -- 7.7.2.7 Diglycidyl Ether of 4-Methylol Resorcinol -- 7.7.2.8 Diglycidyl Ether of 4-Acetyl Resorcinol -- 7.7.3 Triglycidyl Ether Compounds -- 7.7.4 Tetraglycidyl Ether Resins (Tetraepoxides) -- 7.7.5 Polyglycidyl Ether Compounds (Polyepoxides) -- 7.7.6 Toughening of Resorcinolic Epoxy Resin Systems -- 7.7.7 Diglycidyl Ether of Alkoxylated Resorcinol -- 7.7.8 Summary and Outlook -- References -- 7.8 Barrier Polymers -- 7.8.1 Introduction -- 7.8.2 Polymers Exhibiting High Barrier Properties -- 7.8.3 Current Packaging Technologies for Oxygen Sensitive Materials -- 7.8.4 Plastic Beer Bottles and Production Challenges -- 7.8.5 Resorcinol Chemistry in High Barrier Polymers -- 7.8.6 HER Based Barrier Polymers -- 7.8.7 High Barrier Polymers from RDGE -- 7.8.7.1 Thermoplastic Barrier Polymers -- 7.8.7.2 Thermoset Barrier Polymers -- 7.8.8 High Barrier Polymers Based on RDOA -- 7.8.8.1 Polyesters from RDOA and Aromatic Dicarboxylic Acids -- 7.8.8.2 Container Performance with RDOA Based Polyesters -- 7.8.8.3 Polyesters from RDOA and Aromatic Diols -- 7.8.8.4 Polyester from Dual Functional Monomer -- 7.8.8.5 High Barrier Polyamides from RDOA -- 7.8.8.6 High Barrier RDOA Based Polyamide -- Clay Nanocomposites -- 7.8.8.7 Polyesteramides from RDOA -- 7.8.9 Summary and Outlook -- References -- 7.9 Polyurethanes -- 7.9.1 Introduction -- 7.9.2 Cast Polyurethane Elastomers -- 7.9.3 Resorcinol Based Aromatic Diols -- 7.9.4 Cast Polyurethanes Using MDI Prepolymers -- 7.9.4.1 Comparative Performance of HER versus HQEE -- 7.9.4.2 Performance Comparison of HER and HER TG-210 Extenders -- 7.9.5 Highly Resilient and Thermally Stable Cast Elastomers. -- 7.9.5.1 Highly Resilient Cast Elastomers from TG-210 and Terathane Polyol Blends -- 7.9.5.2 Dynamic Mechanical Analysis (DMA) of High Resilient Elastomers |
|
Note continued: 7.9.5.3 Hydrolysis Resistance of High Resilient Elastomers -- 7.9.6 High Hardness Cast Polyurethanes -- 7.9.7 HPR Extended Cast Elastomers -- 7.9.8 Cast Elastomers Based on TDI Prepolymers -- 7.9.9 Cast Polyurethanes Using PPDI Prepolymers -- 7.9.9.1 Heat Aging of Polyether Elastomers -- 7.9.9.2 DMA Study Results -- 7.9.9.3 Hydrolysis Resistance of Elastomers -- 7.9.9.4 DSC Analysis -- 7.9.10 Summary and Outlook -- References -- 8 Polymer Additives -- 8.1 UV Absorbers -- 8.1.1 Introduction -- 8.1.2 Resorcinol Based UV Absorbers for Polymers -- 8.1.3 Benzophenones from Resorcinol -- 8.1.3.1 UV Absorption Mechanism for Benzophenones Compounds -- 8.1.3.2 2,4-Dihydroxy Benzophenone and Derivatives -- 8.1.3.3 Dibenzoyl Resorcinol and Derivatives -- 8.1.3.4 Trihydroxybenzophenone Derivatives -- 8.1.3.5 Tetrahydroxybenzophenone and Derivatives -- 8.1.3.6 Polymerizable and Polymeric Benzophenones -- 8.1.4 Benzotriazoles -- 8.1.4.1 Benzotriazoles from Resorcinol -- 8.1.4.2 UV Absorbing Mechanism for Benzotriazole Compounds -- 8.1.4.3 Effect of Substitution on the UV Performance -- 8.1.4.4 Benzotriazole Derivatives -- 8.1.4.5 Polymerizable and Polymeric Benzotriazoles -- 8.1.5 Resorcinol Based Triazine Chemistry -- 8.1.5.1 Resorcinol-Triazine Chemistry -- General -- 8.1.5.2 UV Absorbing Mechanism for Resorcinol-Triazine System -- 8.1.5.3 Tris-Resorcinol-Triazine and Derivatives -- 8.1.5.4 Bis-Resorcinol-Triazine Compound and Derivatives -- 8.1.5.5 Mono-resorcinol-Triazine Compounds and Their Derivatives -- 8.1.6 Summary and Outlook -- References -- 8.2 Flame Retardants -- 8.2.1 Introduction -- 8.2.2 Thermoplastic Polymers Need Flame Retardants -- 8.2.2.1 Polycarbonate (PC) Resins -- 8.2.2.2 Polyphenylene Ether (PPE or PPO) Resins -- 8.2.2.3 Acrylonitrile-Butadiene-Styrene (ABS) Resins -- 8.2.2.4 High Impact Polystyrene (HIPS) Resins |
|
Note continued: 8.2.2.5 Poly (Butylene Terephthalate) (PBT) Resin -- 8.2.3 Flammability Testing of Plastic Materials -- 8.2.3.1 Limiting Oxygen Index (LOI) Method [11] -- 8.2.3.2 Cone Calorimeter Method -- 8.2.3.3 Underwriters Laboratory Vertical Burning Test (UL-94) -- 8.2.4 Flame Retardants from Resorcinol Chemistries -- 8.2.4.1 Resorcinol Bis-(Diphenyl Phosphate) Ester (RDP) -- 8.2.4.2 Mono-Hydroxy Terminated Resorcinol Diphosphate (RDP-OH) -- 8.2.4.3 Dihydroxy Terminated Resorcinol Diphosphate [RDP-(OH)2] -- 8.2.4.4 Resorcinol Bis-(dixylenyl) Phosphate -- 8.2.4.5 Bis-(3-Hydroxyphenyl) Phenyl Phosphate (BHPP) -- 8.2.5 Toxicity, Environmental and Health Aspects of RDP -- 8.2.6 Thermal Stabilities of Resorcinol Phosphate Esters -- 8.2.7 Applications of Resorcinol Phosphate Esters -- 8.2.7.1 Flow Modifier in Thermoplastic Resins -- 8.2.7.2 Flame Retardant Properties of ABS Resin Systems -- 8.2.7.3 Flame Retardant Properties in HIPS Polymers -- 8.2.7.4 Flame Retarded Properties in PPO/HIPS Systems -- 8.2.7.5 Flame Retarding Properties in PC and PC/ABS Resin Systems -- 8.2.8 Flame Retardant Mechanisms in PC/ABS and PPO/HIPS Resins -- 8.2.9 Flame Retardant Additives in Polyester Materials -- 8.2.10 Phosphorus-Nitrogen Synergism -- 8.2.11 Flame Retarded Epoxy Resins -- 8.2.12 Flame Retardancy in Polyurethanes -- 8.2.13 Summary and Outlook -- References -- 9 Resorcinol Chemistry in Pharmaceuticals Applications -- 9.1 Introduction -- 9.2 Alcoholism -- 9.3 Allergy and Inflammation -- 9.4 Alzheimer's Disease -- 9.5 Anaemia -- 9.6 Antiseptic, Bactericide and Germicide -- 9.7 Asthma -- 9.8 Cancer -- 9.9 Cholesterol -- 9.10 Diabetes and Obesity -- 9.11 Diagnosis and Biological Assays -- 9.12 Depression -- 9.13 Estrogens -- 9.14 Heart Failure -- 9.15 Immune Diseases -- 9.16 Leukotrienes -- 9.17 Malaria -- 9.18 Osteoporosis and Menopause |
|
Note continued: 9.19 Pathological Conditions -- Iron Overload Diseases -- 9.20 Skin Lightening Agents -- 9.21 Ulcers -- 9.22 Viral Infections -- 9.23 Weight Management -- 9.24 Preparative Procedures for Resorcinolic Derivatives -- 9.25 Summary and Outlook -- References -- 10.1 Introduction -- 10.2 Positive and Negative Photoresist Materials -- 10.2.1 Positive Photoresists -- 10.2.2 Negative Photoresists -- 10.3 Radiation Sensitivity of Photoresists -- 10.4 Resists with Good Lithographic Properties -- 10.5 Resorcinol Chemistry in Photoresist Applications -- 10.5.1 Heat Resistant Novolac Resins -- 10.5.2 Photoactive or Photosensitizer Compounds -- 10.5.3 Positive Dye Photoresist Compositions -- 10.5.4 Dissolution Inhibitors in Photoresist Compositions -- 10.6 Summary and Future Directions -- References |
Summary |
Resorcinol chemistry has been providing valuable properties and products in the development of advanced technologies in the areas of pharmaceuticals, rubber compounds, wood composites and plastics. Notable technologies include steel belted radial tires, resorcinol-formaldehyde-latex adhesives (RFL), a weather proof polycarbonate (Sollx), a super heat resistant polymer (PEN-RTM), the world's strongest fiber (Zylon), sun screens (UV absorbers), Intal (an asthma drug), Ostivone (an osteoporosis drug), Throat Plus (lozenges), Centron and Saheli (oral contraceptive pills), and many more. This new resorcinol book contains information on the chemistry and technologies developed for the usefulness of human needs. Scientists and researchers around the world working in the areas of pharmaceuticals, rubber compounds (tires, hoses, belts), polymers, polymer additives (UV absorbers, flame retardants), composites (polymers and wood), photoresists, or just simply organic chemistry will benefit from this key resorcinol reference |
Bibliography |
Includes bibliographical references and index |
Notes |
English |
In |
Springer e-books |
Subject |
Resorcinol.
|
|
Resorcinols
|
|
Resorcinol.
|
|
Resorcinols.
|
|
Resorcinol
|
Form |
Electronic book
|
ISBN |
9783540251422 |
|
3540251421 |
|
9783540280903 |
|
3540280901 |
|
6611330097 |
|
9786611330095 |
|