Limit search to available items
Book Cover
E-book
Author Holder, E. Jeff, author

Title Angle-of-arrival estimation using radar interferometry : methods and applications / E. Jeff Holder
Published Edison, NJ : SciTech Publishing, [2014]
©2014
Table of Contents
 List of Figuresxi
 List of Tablesxviii
 Prefacexix
 Acknowledgmentsxxiii
1.Applications of RF Interferometry1
1.1.Military Applications1
1.2.Sports Applications3
1.3.Synthetic Aperture Radar6
1.4.Radio Astronomy7
1.4.1.Stellar Imaging Using Radio Astronomy10
1.5.Near-Geostationary Interferometric Tracking11
 References15
2.Probability Theory17
2.1.Random Variable17
2.2.Probability Density18
2.3.Mean and Covariance19
2.4.Maximum Likelihood20
2.5.Cramer-Rao Lower Bound20
2.6.Lower Bounds for Biased Estimators22
2.6.1.Bhattacharyya Bound24
2.6.2.Bobrovsky-Zakai Bound24
2.6.3.Weiss-Weinstein Bound24
2.6.4.Ziv-Zakai Bound25
 References25
3.Radar Fundamentals27
3.1.Signal Propagation and Representation27
3.2.Continuous Wave Doppler Waveforms29
3.3.Pulse Doppler Waveforms29
3.3.1.Basic Pulse-Doppler Parameters30
3.3.2.Pulse Modulation and the Time-Bandwidth Product31
3.3.3.Pulse Doppler Waveform Processing and Pulse Compression32
3.4.Radar Range Equation34
3.5.Phase Error37
3.5.1.Thermal Noise37
3.5.2.Clutter38
3.5.3.Multipath and Interference39
 References42
4.Radar Angle-of-Arrival Estimation43
4.1.The Angle-of-Arrival Problem43
4.2.Monopulse Angle Estimation44
4.3.Phased Array Beam Pointing Error48
4.3.1.Effect of Correlated Phase Errors on Phased Array Beam Pointing49
4.3.2.Interferometer Accuracy and Beam Pointing Error50
4.4.Resolution Versus Accuracy51
4.5.Enhanced Angle Estimation Using the Array Covariance52
4.5.1.Angle-of-Arrival Resolution Performance52
4.5.2.Signal Versus Noise Eigenvalue Classification58
4.6.Enhanced Angle Resolution Algorithms61
 References62
5.Radar Waveforms65
5.1.Frequency Coding66
5.1.1.Costas Codes67
5.1.2.Linear Frequency Modulation68
5.1.3.Frequency-Modulated Continuous Wave (FMCW)73
5.1.4.Nonlinear Frequency Modulation75
5.2.Phase Coding80
5.2.1.Pseudorandom Noise Codes (Kasami Codes)80
5.2.2.Group Modulation of PRN Codes82
5.2.3.Essentially Orthogonal Waveforms88
5.2.4.Optimized Multiphase Waveforms90
5.3.Bounds on Autocorrelation and Cross-Correlation Performance92
5.3.1.Correlation and Cross-Correlation of Random Binary Phase Sequences93
5.3.2.Derivation of the Welch Bound for k = 194
5.4.Chaotic Waveforms97
 References99
6.The Radar Interferometer101
6.1.Monopulse Interferometry101
6.1.1.Monopulse Interferometer Phase Sensitivity102
6.1.2.Monopulse Beamwidth103
6.1.3.Monopulse Interferometer Angle Error104
6.1.4.Off-Axis Monopulse Error105
6.2.Digital Interferometer Angle Error107
6.2.1.Correlated and Nonidentically Distributed Error Effects108
6.2.2.Impact of Baseline Errors110
6.3.Transmit Interferometry111
6.3.1.Correlated and Nonidentically Distributed Error Effects113
6.4.Cramer-Rao Lower Bound Analysis114
6.5.Amplitude Interferometer116
6.6.Bistatic Interferometer117
6.7.Differential Interferometry117
6.8.Synthetic Aperture Radar Interferometry119
6.8.1.SAR Interferometry Using Differentials120
6.8.2.SAR Interferometry Using Angle-of-Arrival121
6.8.3.SAR Interferometry Height Error122
6.9.Cramer Rao Lower Bound for Time-of-Arrival123
6.10.Coherent Phase Trilateration127
6.10.1.Geometric Dilution of Precision130
6.11.Summary of Interferometer Angle Precision132
 References133
7.Interferometer Signal Processing135
7.1.Basic Interferometer Processing135
7.2.Orthogonal Interferometer Processing137
7.3.Angle Ambiguity Resolution137
7.3.1.Nyquist Sampling for a Spatial Array139
7.3.2.Number of Angle Ambiguities141
7.3.3.Angle Ambiguity Resolution Using Frequency and Spatial Diversity142
7.3.4.Probability of Correct Ambiguity Resolution145
7.3.5.Angle Ambiguity Resolution Using Doppler148
7.4.Angle-of-Arrival Determination151
7.4.1.First-Order Angle Estimation153
7.4.2.Second-Order Angle Estimation154
7.4.3.Interferometer Angle Measurements for Distributed Transmit/Receive Antennas155
7.5.LFM Stretch Processing161
7.5.1.Angle-of-Arrival and Stretch Processing162
7.5.2.CW/FMCW Homodyne Processing165
7.6.Transmit Interferometry Calibration166
7.7.Synthetic Aperture Radar Interferometry171
7.7.1.Reference Phase Determination173
7.7.2.Phase Unwrapping173
7.8.Near-Geostationary Interferometry Tracking175
7.9.Adaptive Array Processing181
7.9.1.The Multiple Sidelobe Canceller181
7.9.2.The Generalized Sidelobe Canceller (GSC)182
7.9.3.The Orthogonal Space Projection Canceler185
 References187
8.Sparsely Populated Antenna Arrays189
8.1.Sparse Linear Arrays190
8.2.Interval Partitions190
8.3.Cyclic Coprime Partitions194
8.3.1.Application to Spatial Sampling195
8.4.Nested Cyclic Partitions198
8.5.Numerical Sieve Methods for Optimized Sparse Array Generation199
8.5.1.Summary of Numerical Sieve Method202
8.6.Sparse Array Antenna Performance203
8.7.Antenna Pattern Methods206
8.7.1.Unequally Spaced Arrays207
8.7.2.Polynomial Factorization Method210
8.8.Sparse Array Angle-of-Arrival214
8.8.1.Sparse Array Monopulse215
8.8.2.Sparse Array Interferometry216
8.8.3.Sparse Array Angle Estimation Using the Array Covariance224
8.9.Two-Dimensional Sparse Arrays225
8.10.Multiple-Input and Multiple-Output (MIMO) Sparse Arrays229
 References232
9.Interferometer Angle-of-Arrival Error Effects235
9.1.Specular Multipath236
9.1.1.Multipath Mitigation Using the Orthogonal Interferometer237
9.1.2.Multipath Mitigation Using Sparse Arrays240
9.1.3.Quantification of Multipath Using Interferometry245
9.2.Angle Glint250
9.3.ADC Timing Jitter255
9.4.I and Q Imbalances256
9.5.Quantization Effects258
9.5.1.Phase Shifter Quantization Error258
9.5.2.ADC Phase Quantization Error259
9.6.Wideband Effects262
9.6.1.Antenna Dispersion Loss264
9.6.2.Channel Transfer Function Mismatch266
9.7.Error Summary269
 References269
10.Tropospheric Effects on Angle-of-Arrival271
10.1.Tropospheric Refraction Effects272
10.1.1.Geometric Optics (Ray Tracing)272
10.1.2.Ray Tracing Adjoint Operator280
10.2.Tropospheric Turbulence Effects281
10.2.1.Basic Theory for RF Turbulence281
10.2.2.Turbulence-Induced Radar Effects282
10.2.3.Turbulence-Induced Radar Scintillation283
10.2.4.Radar Beam Fluctuation at the Target283
10.2.5.Space-to-Ground Turbulence Analysis284
 References287
Appendix A Discrete Fourier Transform289
Appendix B The Matched Filter291
Appendix C The Principle of Stationary Phase295
Appendix D The Fundamental Theory of Binary Code299
Appendix E Theoretical Development of Kasami Codes303
Appendix F Relationship of the Continuous Power Spectrum and Discrete Variance307
Appendix G Time-of-Arrival CRLB (Alternative Approach)309
Appendix H Two-Dimensional Trilateration Using CPT and RGS Ranging Methods--MATLAB® Code313
Appendix I Angle-of-Arrival Determination Using a Rotated Antenna Configuration317
Appendix J First- and Second-Order Interferometer Angle Measurements---MATLAB® Code321
Appendix K Interferometer Angle Measurements for Distributed Transmit/Receive Antennas---MATLAB® Code323
 Index325

Copies

Description 1 online resource (xxiv, 333 pages) : illustrations
Contents Applications of RF interferometry -- Probability theory -- Radar fundamentals -- Radar angle-of-arrival estimation -- Radar waveforms -- The radar interferometer -- Interferometer signal processing -- Sparsely populated antenna arrays -- Interferometer angle-of-arrival error effects -- Tropospheric effects on angle-of-arrival -- Appendix A. Discrete Fourier transform -- Appendix B. The matched filter -- Appendix C. The principle of stationary phase -- Appendix D. The fundamental theory of binary code -- Appendix E. Theoretical development of Kasami codes -- Appendix F. Relationship of the continuous power spectrum and discrete variance -- Appendix G. Time-of-arrival CRLB (alternative approach) -- Appendix H. Two-dimensional trilateration using CPT and RGS ranging methods--MATLAB code -- Appendix I. Angle-of-arrival determination using a rotated antenna configuration -- Appendix J. First- and second-order interferometer angle measurements--MATLAB code -- Appendix K. Interferometer angle measurements for distributed transmit/receive antennas--MATLAB code
Summary "Radar interferometers provide a cost-effective radar architecture to achieve enhanced angle accuracy for enhanced target tracking. Presenting a comprehensive understanding of various radar interferometer architectures, 'Angle of Arrival Estimation Using Radar Interferometry' aims to quantify interferometer angle estimation accuracy by developing a general understanding of various radar interferometer architectures and presenting a comprehensive understanding of the effects of radar-based measurement errors on angle-of-arrival estimation. The interferometer architectures described include a basic digital interferometer, a monopulse interferometer, an orthogonal interferometer and signal processing algorithms. By exploring interferometry and beyond, this book offers a unique perspective and an in depth look at the derivation of angle error equations for a radar interferometer as affected not only by additive noise but by other error effects such as multipath, glint, and spectral distortion. As such this book is primarily directed toward tracking radars but will also discuss imaging applications as well."--IET Digital Library (viewed January 31, 2017)
Bibliography Includes bibliographical references and index
Notes Online resource; title from PDF title page (ebrary, viewed April 16, 2014)
Subject Interferometry.
Doppler radar.
Interferometry
TECHNOLOGY & ENGINEERING -- Military Science.
Doppler radar
Interferometry
antenna arrays.
direction-of-arrival estimation.
radar antennas.
radar interferometry.
signal processing.
Form Electronic book
ISBN 9781613531853
1613531850