Limit search to available items
Book Cover
E-book

Title Advanced optical instruments and techniques / edited by Daniel Malacara Hernández, Brian J. Thompson
Edition First edition
Published Boca Raton, FL : CRC Press, 2017

Copies

Description 1 online resource : text file, PDF
Series Optical science and engineering
Optical science and engineering (CRC Press)
Contents Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Contributors -- Chapter 1: Optics of Biomedical Instrumentation -- 1.1 Wide-Field Microscopy -- 1.1.1 Optical Layout -- 1.1.2 Resolution -- 1.2 Fluorescence Microscope -- 1.2.1 Introduction to Fluorescence Process -- 1.2.2 Fluorescence Imaging Systems -- 1.2.2.1 Fluorescence Filters -- 1.2.2.2 System Consideration -- 1.2.2.3 Multiphoton Imaging -- 1.3 Confocal Microscopy -- 1.3.1 Principle -- 1.3.2 Components -- 1.3.2.1 Illumination -- 1.3.2.2 Beamsplitter -- 1.3.2.3 Scanner -- 1.3.2.4 Objective Lens -- 1.3.2.5 Pinhole -- 1.3.2.6 Relay Systems -- 1.3.2.7 Detector -- 1.3.3 Types of Confocal Microscopes -- 1.3.3.1 Point Scanning -- 1.3.3.2 Line Scanning -- 1.3.3.3 Nipkow Disk -- 1.3.3.4 Confocal Microscopes Using Spatial Light Modulators -- 1.3.3.5 Fiber Confocal -- 1.3.3.6 Spectral Confocal Imaging -- 1.4 Optical Sectioning Structured Illumination Microscopy (OS-SIM) -- 1.4.1 Principle -- 1.4.2 Optical Sectioning Strength -- 1.4.3 Optical Sectioning Algorithm -- 1.4.4 Problem of Speed and Solution -- 1.5 Super-Resolution Structured Illumination Microscopy (SR-SIM) -- 1.5.1 Principle -- 1.5.2 SR-SIM Instrumentation -- 1.5.3 Reconstruction Algorithm -- 1.5.4 Nonlinear SIM -- 1.5.5 Combining OS-SIM and SR-SIM -- 1.6 Endoscopy -- 1.6.1 Introduction -- 1.6.2 Basic Optics for Endoscopes -- 1.6.3 Objective Lenses -- 1.6.4 Relay Lenses -- References -- Chapter 2: Wavefront Slope Measurements in Optical Testing -- 2.1 Introduction and Historical Review -- 2.2 Knife Test -- 2.2.1 Foucaultgram Simulations -- 2.3 Wire Test -- 2.4 Ronchi Test -- 2.4.1 Ronchigram Simulations -- 2.4.2 Substructured Ronchi Gratings -- 2.5 Hartmann Test -- 2.5.1 Screen Design and Hartmanngram Evaluation -- 2.5.2 Shack-Hartmann Test -- 2.6 Null Tests: Ronchi, Hartmann, and Shack-Hartmann
4.4.4 N-Step Least-Squares Phase-Shifting Algorithm -- 4.4.5 Synthesis of Robust Quadrature Filters for Phase-Shifting Interferometry -- 4.4.6 Design of FTFs by Means of First-Order Building Blocks -- 4.4.7 Six-Step PSA with Robustness against Background Rejection and Detuning Error -- 4.4.8 Seven-Step PSA with a Second-Order Spectral Zero at -- 4.4.9 Eight-Step Broadband PSA Tuned at -- 4.5 Spatial Phase-Measuring Methods -- 4.5.1 Fourier-Transform Method for Open-Fringes Interferograms -- 4.5.2 Spatial Carrier Phase-Shifting Method -- 4.5.3 Synchronous Demodulation of Open-Fringes Interferograms -- 4.5.4 Robust Quadrature Filters -- 4.5.5 The Regularized Phase-Tracking Technique -- 4.6 Phase Unwrapping -- 4.6.1 Unwrapping Using Least-Squares Integration of Gradient Phase -- 4.6.2 Unwrapping Using the Regularized Phase-Tracking Technique -- 4.6.3 Temporal Phase Unwrapping -- 4.7 Extended Range Fringe Pattern Analysis -- 4.7.1 Phase Retrieval from Gradient Measurement Using Screen-Testing Methods -- 4.7.2 Wavefront Slope Analysis with Linear Gratings (Ronchi Test) -- 4.7.3 Moiré Deflectometry -- 4.7.4 Wavefront Analysis with Lateral Shearing Interferometry -- 4.7.5 Wavefront Analysis with Hartmann Screens -- 4.7.6 Wavefront Analysis by Curvature Sensing -- 4.7.7 Sub-Nyquist Analysis -- 4.8 Applicability of Fringe Analysis Methods -- Acknowledgments -- References -- Chapter 5: Optical Methods in Metrology: Point Methods -- 5.1 Introduction -- 5.2 Linear Distance Measurements -- 5.2.1 Large-Distance Optical Measurements -- 5.2.1.1 Range Finders and Optical Radar -- 5.2.1.2 Curvature and Focal Length -- 5.2.2 Moiré Techniques in Medium Distances -- 5.2.2.1 Photoelectric Fringe Counting -- 5.2.2.2 Talbot Effect -- 5.2.2.3 Liquid Level Measurement -- 5.2.2.4 Focal Length Measurement -- 5.2.2.5 Thickness Measurement
5.2.3 Interferometric Methods in Small Distance Measurement -- 5.2.3.1 Multiple-Wavelength Interferometry -- 5.3 Angular Measurements -- 5.3.1 Non-Interferometric Methods -- 5.3.1.1 Divided Circles and Goniometers -- 5.3.1.2 Autocollimators and Theodolites -- 5.3.1.3 Angle Measurement in Prisms -- 5.3.1.4 Level Measurement -- 5.3.1.5 Parallelism Measurement -- 5.3.2 Moiré Methods in Level, Angle, Parallelism, and Perpendicularity Measurements -- 5.3.2.1 Tilt Measurement -- 5.3.2.2 Optical Collimation -- 5.3.2.3 Optical Level and Optical Alignment -- 5.3.2.4 Slope and Curvature Measurements -- 5.3.3 Interferometric Methods -- 5.4 Velocity and Vibration Measurement -- 5.4.1 Velocity Measurement Using Stroboscopic Lamps -- 5.4.2 The Laser Interferometer -- 5.4.3 Laser Speckle Photography and Particle Image Velocimetry -- 5.4.4 Laser Doppler Velocimetry -- 5.4.4.1 Physical Principle -- 5.4.4.2 Frequency Shifting and Optical Setups -- 5.4.4.3 Photodetector and Doppler Signal Processing -- 5.4.5 Optical Vibrometers -- 5.4.5.1 Subcarrier Systems -- 5.4.6 Types of Laser Doppler Vibrometers -- 5.4.6.1 Referenced (Out-of-Plane) Vibrometer -- 5.4.6.2 Dual Beam (ln-Plane) or Differential Vibrometer -- 5.4.6.3 Scanning Vibrometer -- 5.4.6.4 Spot Projection Systems -- 5.4.7 Vibration Analysis by Moiré Techniques -- References -- Chapter 6: Optical Metrology of Diffuse Objects:Full-Field Methods -- 6.1 Introduction -- 6.2 Fringe Projection -- 6.3 Holographic Interferometry -- 6.3.1 Optical Holographic Interferometry -- 6.3.2 Digital Holographic Interferometry -- 6.4 Electronic Speckle Pattern Interferometry -- 6.4.1 Optical Setups for Electronic Speckle Pattern Interferometry -- 6.4.1.1 Coaxial Arrangement -- 6.4.1.2 Asymmetrical Arrangement -- 6.4.1.3 Symmetrical Arrangement -- 6.4.2 Fringe Formation by Video Signal Subtraction or Addition
6.4.3 Real-Time Vibration Measurement -- 6.5 Electronic Speckle Pattern Shearing Interferometry -- 6.6 In-Plane Grid and Moiré Methods -- 6.6.1 Basis of Grid Method -- 6.6.2 Conventional and Photographic Moiré Patterns -- 6.6.3 Moiré Interferometry -- 6.6.4 Multiple-Channel Grating Interferometric Systems -- References -- Chapter 7: Active and Adaptive Optics -- 7.1 Introduction and History -- 7.2 Principles of Adaptive and Active Optics -- 7.3 Wavefront Sensing in Adaptive Optics -- 7.3.1 Shack-Hartmann Wavefront Sensor -- 7.3.2 Pyramid Wavefront Sensor -- 7.4 Adaptive Optics in Astronomy -- 7.5 Adaptive Optics in Ophthalmology -- References -- Chapter 8: Holography -- 8.1 Introduction -- 8.2 Diffraction Gratings -- 8.2.1 Waves, Interference, and Grating Criteria -- 8.2.2 Thick Gratings Characteristics -- 8.2.3 Thin Gratings Characteristics -- 8.3 Scalar Theory of Diffraction -- 8.3.1 Kirchhoff Diffraction Integral -- 8.3.2 Fresnel Diffraction Integral -- 8.3.3 Fraunhofer Diffraction Integral -- 8.3.4 Diffraction by Simple Apertures -- 8.3.4.1 Diffraction by a Slit -- 8.3.4.2 Diffraction by a Pinhole -- 8.3.4.3 Diffraction by Multiple Slits -- 8.3.4.4 Fresnel Zone Plate -- 8.4 Computer Generated Holograms -- 8.4.1 Fourier Hologram -- 8.4.2 Fresnel Hologram -- 8.4.3 Iterative Computation for Hologram -- 8.4.4 Errors in CGH -- 8.5 Holographic Setups -- 8.5.1 Formalism -- 8.5.2 Inline Transmission Hologram (Gabor) -- 8.5.3 Inline Reflection Hologram (Denisyuk) -- 8.5.4 Off-Axis Transmission Hologram (Leith and Upatnieks) -- 8.5.5 Transfer Holograms -- 8.5.6 Rainbow Hologram (Benton) -- 8.5.7 Holographic Stereogram -- 8.5.8 Holographic Interferometry -- 8.6 Holographic Recording Materials -- 8.6.1 Silver Halide -- 8.6.2 Dichromated Gelatin -- 8.6.3 Photopolymer -- 8.6.4 Photoresist and Embossed Holograms -- 8.6.5 Miscellaneous Materials
Summary "Advanced Optical Instruments and Techniques includes twenty-three chapters providing processes, methods, and procedures of cutting-edge optics engineering design and instrumentation. Topics include biomedical instrumentation and basic and advanced interferometry. Optical metrology is discussed, including point and full-field methods. Active and adaptive optics, holography, radiometry, the human eye, and visible light are covered as well as materials, including photonics, nanophotonics, anisotropic materials, and metamaterials."--Provided by publisher
Subject Optics -- Handbooks, manuals, etc
Optical instruments -- Handbooks, manuals, etc
Optical engineering -- Handbooks, manuals, etc
Optics
Optical engineering
Optical instruments
Genre/Form Electronic books
Handbooks and manuals
Form Electronic book
Author Malacara, Daniel, 1937- editor.
Thompson, Brian J., editor.
ISBN 9781498720687
1498720684
1351646273
9781351646277
1315119978
9781315119977