A group of disorders characterized by an autosomal dominant pattern of inheritance with high rates of spontaneous mutation and multiple neurofibromas or neurilemmomas. NEUROFIBROMATOSIS 1 (generalized neurofibromatosis) accounts for approximately 95% of cases, although multiple additional subtypes (e.g., NEUROFIBROMATOSIS 2, neurofibromatosis 3, etc.) have been described. (From Neurochirurgie 1998 Nov;44(4):267-72)
A group of disorders characterized by an autosomal dominant pattern of inheritance with high rates of spontaneous mutation and multiple neurofibromas or neurilemmomas. NEUROFIBROMATOSIS 1 (generalized neurofibromatosis) accounts for approximately 95% of cases, although multiple additional subtypes (e.g., NEUROFIBROMATOSIS 2, neurofibromatosis 3, etc.) have been described. (From Neurochirurgie 1998 Nov;44(4):267-72)
An autosomal dominant inherited disorder (with a high frequency of spontaneous mutations) that features developmental changes in the nervous system, muscles, bones, and skin, most notably in tissue derived from the embryonic NEURAL CREST. Multiple hyperpigmented skin lesions and subcutaneous tumors are the hallmark of this disease. Peripheral and central nervous system neoplasms occur frequently, especially OPTIC NERVE GLIOMA and NEUROFIBROSARCOMA. NF1 is caused by mutations which inactivate the NF1 gene (GENES, NEUROFIBROMATOSIS 1) on chromosome 17q. The incidence of learning disabilities is also elevated in this condition. (From Adams et al., Principles of Neurology, 6th ed, pp1014-18) There is overlap of clinical features with NOONAN SYNDROME in a syndrome called neurofibromatosis-Noonan syndrome. Both the PTPN11 and NF1 gene products are involved in the SIGNAL TRANSDUCTION pathway of Ras (RAS PROTEINS)
An autosomal dominant inherited disorder (with a high frequency of spontaneous mutations) that features developmental changes in the nervous system, muscles, bones, and skin, most notably in tissue derived from the embryonic NEURAL CREST. Multiple hyperpigmented skin lesions and subcutaneous tumors are the hallmark of this disease. Peripheral and central nervous system neoplasms occur frequently, especially OPTIC NERVE GLIOMA and NEUROFIBROSARCOMA. NF1 is caused by mutations which inactivate the NF1 gene (GENES, NEUROFIBROMATOSIS 1) on chromosome 17q. The incidence of learning disabilities is also elevated in this condition. (From Adams et al., Principles of Neurology, 6th ed, pp1014-18) There is overlap of clinical features with NOONAN SYNDROME in a syndrome called neurofibromatosis-Noonan syndrome. Both the PTPN11 and NF1 gene products are involved in the SIGNAL TRANSDUCTION pathway of Ras (RAS PROTEINS)
An autosomal dominant inherited disorder (with a high frequency of spontaneous mutations) that features developmental changes in the nervous system, muscles, bones, and skin, most notably in tissue derived from the embryonic NEURAL CREST. Multiple hyperpigmented skin lesions and subcutaneous tumors are the hallmark of this disease. Peripheral and central nervous system neoplasms occur frequently, especially OPTIC NERVE GLIOMA and NEUROFIBROSARCOMA. NF1 is caused by mutations which inactivate the NF1 gene (GENES, NEUROFIBROMATOSIS 1) on chromosome 17q. The incidence of learning disabilities is also elevated in this condition. (From Adams et al., Principles of Neurology, 6th ed, pp1014-18) There is overlap of clinical features with NOONAN SYNDROME in a syndrome called neurofibromatosis-Noonan syndrome. Both the PTPN11 and NF1 gene products are involved in the SIGNAL TRANSDUCTION pathway of Ras (RAS PROTEINS)
An autosomal dominant inherited disorder (with a high frequency of spontaneous mutations) that features developmental changes in the nervous system, muscles, bones, and skin, most notably in tissue derived from the embryonic NEURAL CREST. Multiple hyperpigmented skin lesions and subcutaneous tumors are the hallmark of this disease. Peripheral and central nervous system neoplasms occur frequently, especially OPTIC NERVE GLIOMA and NEUROFIBROSARCOMA. NF1 is caused by mutations which inactivate the NF1 gene (GENES, NEUROFIBROMATOSIS 1) on chromosome 17q. The incidence of learning disabilities is also elevated in this condition. (From Adams et al., Principles of Neurology, 6th ed, pp1014-18) There is overlap of clinical features with NOONAN SYNDROME in a syndrome called neurofibromatosis-Noonan syndrome. Both the PTPN11 and NF1 gene products are involved in the SIGNAL TRANSDUCTION pathway of Ras (RAS PROTEINS)
An autosomal dominant inherited disorder (with a high frequency of spontaneous mutations) that features developmental changes in the nervous system, muscles, bones, and skin, most notably in tissue derived from the embryonic NEURAL CREST. Multiple hyperpigmented skin lesions and subcutaneous tumors are the hallmark of this disease. Peripheral and central nervous system neoplasms occur frequently, especially OPTIC NERVE GLIOMA and NEUROFIBROSARCOMA. NF1 is caused by mutations which inactivate the NF1 gene (GENES, NEUROFIBROMATOSIS 1) on chromosome 17q. The incidence of learning disabilities is also elevated in this condition. (From Adams et al., Principles of Neurology, 6th ed, pp1014-18) There is overlap of clinical features with NOONAN SYNDROME in a syndrome called neurofibromatosis-Noonan syndrome. Both the PTPN11 and NF1 gene products are involved in the SIGNAL TRANSDUCTION pathway of Ras (RAS PROTEINS)
A group of disorders characterized by an autosomal dominant pattern of inheritance with high rates of spontaneous mutation and multiple neurofibromas or neurilemmomas. NEUROFIBROMATOSIS 1 (generalized neurofibromatosis) accounts for approximately 95% of cases, although multiple additional subtypes (e.g., NEUROFIBROMATOSIS 2, neurofibromatosis 3, etc.) have been described. (From Neurochirurgie 1998 Nov;44(4):267-72)
A group of disorders characterized by an autosomal dominant pattern of inheritance with high rates of spontaneous mutation and multiple neurofibromas or neurilemmomas. NEUROFIBROMATOSIS 1 (generalized neurofibromatosis) accounts for approximately 95% of cases, although multiple additional subtypes (e.g., NEUROFIBROMATOSIS 2, neurofibromatosis 3, etc.) have been described. (From Neurochirurgie 1998 Nov;44(4):267-72)
1
Neurofibromatosis -- Treatment : Multidisciplinary approach to neurofibromatosis type 1 / Gianluca Tadini, Eric Legius, Hilde Brems, editors
An autosomal dominant inherited disorder (with a high frequency of spontaneous mutations) that features developmental changes in the nervous system, muscles, bones, and skin, most notably in tissue derived from the embryonic NEURAL CREST. Multiple hyperpigmented skin lesions and subcutaneous tumors are the hallmark of this disease. Peripheral and central nervous system neoplasms occur frequently, especially OPTIC NERVE GLIOMA and NEUROFIBROSARCOMA. NF1 is caused by mutations which inactivate the NF1 gene (GENES, NEUROFIBROMATOSIS 1) on chromosome 17q. The incidence of learning disabilities is also elevated in this condition. (From Adams et al., Principles of Neurology, 6th ed, pp1014-18) There is overlap of clinical features with NOONAN SYNDROME in a syndrome called neurofibromatosis-Noonan syndrome. Both the PTPN11 and NF1 gene products are involved in the SIGNAL TRANSDUCTION pathway of Ras (RAS PROTEINS)
A group of disorders characterized by an autosomal dominant pattern of inheritance with high rates of spontaneous mutation and multiple neurofibromas or neurilemmomas. NEUROFIBROMATOSIS 1 (generalized neurofibromatosis) accounts for approximately 95% of cases, although multiple additional subtypes (e.g., NEUROFIBROMATOSIS 2, neurofibromatosis 3, etc.) have been described. (From Neurochirurgie 1998 Nov;44(4):267-72)
A group of disorders characterized by an autosomal dominant pattern of inheritance with high rates of spontaneous mutation and multiple neurofibromas or neurilemmomas. NEUROFIBROMATOSIS 1 (generalized neurofibromatosis) accounts for approximately 95% of cases, although multiple additional subtypes (e.g., NEUROFIBROMATOSIS 2, neurofibromatosis 3, etc.) have been described. (From Neurochirurgie 1998 Nov;44(4):267-72)
An autosomal dominant inherited disorder (with a high frequency of spontaneous mutations) that features developmental changes in the nervous system, muscles, bones, and skin, most notably in tissue derived from the embryonic NEURAL CREST. Multiple hyperpigmented skin lesions and subcutaneous tumors are the hallmark of this disease. Peripheral and central nervous system neoplasms occur frequently, especially OPTIC NERVE GLIOMA and NEUROFIBROSARCOMA. NF1 is caused by mutations which inactivate the NF1 gene (GENES, NEUROFIBROMATOSIS 1) on chromosome 17q. The incidence of learning disabilities is also elevated in this condition. (From Adams et al., Principles of Neurology, 6th ed, pp1014-18) There is overlap of clinical features with NOONAN SYNDROME in a syndrome called neurofibromatosis-Noonan syndrome. Both the PTPN11 and NF1 gene products are involved in the SIGNAL TRANSDUCTION pathway of Ras (RAS PROTEINS)
An autosomal dominant inherited disorder (with a high frequency of spontaneous mutations) that features developmental changes in the nervous system, muscles, bones, and skin, most notably in tissue derived from the embryonic NEURAL CREST. Multiple hyperpigmented skin lesions and subcutaneous tumors are the hallmark of this disease. Peripheral and central nervous system neoplasms occur frequently, especially OPTIC NERVE GLIOMA and NEUROFIBROSARCOMA. NF1 is caused by mutations which inactivate the NF1 gene (GENES, NEUROFIBROMATOSIS 1) on chromosome 17q. The incidence of learning disabilities is also elevated in this condition. (From Adams et al., Principles of Neurology, 6th ed, pp1014-18) There is overlap of clinical features with NOONAN SYNDROME in a syndrome called neurofibromatosis-Noonan syndrome. Both the PTPN11 and NF1 gene products are involved in the SIGNAL TRANSDUCTION pathway of Ras (RAS PROTEINS)
Here are entered works on the growth and differentiation of the nervous system. Works limited to the growth of the nervous system are entered under Nervous system--Growth
Dysfunction of the URINARY BLADDER due to disease of the central or peripheral nervous system pathways involved in the control of URINATION. This is often associated with SPINAL CORD DISEASES, but may also be caused by BRAIN DISEASES or PERIPHERAL NERVE DISEASES
1
Neurogenesis -- physiology : Adult neurogenesis in the hippocampus : health, psychopathology, and brain disease / edited by Juan J. Canales
Dysfunction of the URINARY BLADDER due to disease of the central or peripheral nervous system pathways involved in the control of URINATION. This is often associated with SPINAL CORD DISEASES, but may also be caused by BRAIN DISEASES or PERIPHERAL NERVE DISEASES
Neurogenetics -- Congresses. : Neurons, circuitry, and plasticity in the spinal cord and brainstem / issue editors, Lea Ziskind-Conhaim, Amy B. McDermott, Francisco J. Alvarez, John D. Houle, and Shawn Hochman
A group of inherited disorders characterized by degeneration of dorsal root and autonomic ganglion cells, and clinically by loss of sensation and autonomic dysfunction. There are five subtypes. Type I features autosomal dominant inheritance and distal sensory involvement. Type II is characterized by autosomal inheritance and distal and proximal sensory loss. Type III is DYSAUTONOMIA, FAMILIAL. Type IV features insensitivity to pain, heat intolerance, and mental deficiency. Type V is characterized by a selective loss of pain with intact light touch and vibratory sensation. (From Joynt, Clinical Neurology, 1995, Ch51, pp142-4)
A group of inherited disorders characterized by degeneration of dorsal root and autonomic ganglion cells, and clinically by loss of sensation and autonomic dysfunction. There are five subtypes. Type I features autosomal dominant inheritance and distal sensory involvement. Type II is characterized by autosomal inheritance and distal and proximal sensory loss. Type III is DYSAUTONOMIA, FAMILIAL. Type IV features insensitivity to pain, heat intolerance, and mental deficiency. Type V is characterized by a selective loss of pain with intact light touch and vibratory sensation. (From Joynt, Clinical Neurology, 1995, Ch51, pp142-4)
Dysfunction of the URINARY BLADDER due to disease of the central or peripheral nervous system pathways involved in the control of URINATION. This is often associated with SPINAL CORD DISEASES, but may also be caused by BRAIN DISEASES or PERIPHERAL NERVE DISEASES
Dysfunction of the URINARY BLADDER due to disease of the central or peripheral nervous system pathways involved in the control of URINATION. This is often associated with SPINAL CORD DISEASES, but may also be caused by BRAIN DISEASES or PERIPHERAL NERVE DISEASES
Dysfunction of the URINARY BLADDER due to disease of the central or peripheral nervous system pathways involved in the control of URINATION. This is often associated with SPINAL CORD DISEASES, but may also be caused by BRAIN DISEASES or PERIPHERAL NERVE DISEASES
Dysfunction of the URINARY BLADDER due to disease of the central or peripheral nervous system pathways involved in the control of URINATION. This is often associated with SPINAL CORD DISEASES, but may also be caused by BRAIN DISEASES or PERIPHERAL NERVE DISEASES