Theoretical representations that simulate psychological processes and/or social processes. These include the use of mathematical equations, computers, and other electronic equipment
A computer architecture, implementable in either hardware or software, modeled after biological neural networks. Like the biological system in which the processing capability is a result of the interconnection strengths between arrays of nonlinear processing nodes, computerized neural networks, often called perceptrons or multilayer connectionist models, consist of neuron-like units. A homogeneous group of units makes up a layer. These networks are good at pattern recognition. They are adaptive, performing tasks by example, and thus are better for decision-making than are linear learning machines or cluster analysis. They do not require explicit programming
1
Models Neural networks (Neurobiology) : Dynamic biological networks : the stomatogastric nervous system / edited by Ronald M. Harris-Warrick [and others]
Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment
The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures
The study of systems which respond disproportionately (nonlinearly) to initial conditions or perturbing stimuli. Nonlinear systems may exhibit "chaos" which is classically characterized as sensitive dependence on initial conditions. Chaotic systems, while distinguished from more ordered periodic systems, are not random. When their behavior over time is appropriately displayed (in "phase space"), constraints are evident which are described by "strange attractors". Phase space representations of chaotic systems, or strange attractors, usually reveal fractal (FRACTALS) self-similarity across time scales. Natural, including biological, systems often display nonlinear dynamics and chaos
The study of systems which respond disproportionately (nonlinearly) to initial conditions or perturbing stimuli. Nonlinear systems may exhibit "chaos" which is classically characterized as sensitive dependence on initial conditions. Chaotic systems, while distinguished from more ordered periodic systems, are not random. When their behavior over time is appropriately displayed (in "phase space"), constraints are evident which are described by "strange attractors". Phase space representations of chaotic systems, or strange attractors, usually reveal fractal (FRACTALS) self-similarity across time scales. Natural, including biological, systems often display nonlinear dynamics and chaos
Theoretical models simulating behavior or activities in nursing, including nursing care, management and economics, theory, assessment, research, and education. Some examples of these models include Orem Self-Care Model, Roy Adaptation Model, and Rogers Life Process Model