Limit search to available items
Record 46 of 61
Previous Record Next Record
Book Cover
E-book

Title Microfabrication and precision engineering : research and development / edited by J. Paulo Davim
Published Duxford, United Kingdom ; Cambridge, MA : Woodhead Publishing, [2017]
©2017

Copies

Description 1 online resource (1 volume) : illustrations
Series Woodhead Publishing Reviews: Mechanical Engineering Series
Woodhead Publishing Reviews: Mechanical Engineering Series
Contents Front Cover; Microfabrication and Precision Engineering; Copyright Page; Contents; List of contributors; About the editor; Preface; 1 Modeling of micro- and nano-scale cutting; 1.1 Introduction; 1.2 Modeling of microscale cutting; 1.2.1 Minimum chip thickness and size effect; 1.2.2 FEM modeling of microscale cutting; 1.2.3 FEM basics; 1.2.4 FEM cutting models; 1.2.5 Friction modeling; 1.2.6 Material modeling; 1.3 Modeling of nanoscale cutting; 1.3.1 Model geometry and material microstructure; 1.3.2 Potential function; 1.3.3 Boundary conditions and input parameters
1.3.4 Numerical integration and equilibrationConclusions; References; 2 Machining scale: workpiece grain size and surface integrity in micro end milling; 2.1 Introduction; 2.2 Specific cutting energy; 2.3 Size effect; 2.4 Workpiece microstructure scale; 2.5 Surface integrity; 2.5.1 Burr formation; 2.5.2 Chip formation; 2.5.3 Roughness; 2.5.4 Microhardness; 2.5.5 Microstructural damages; 2.5.6 Size effect; References; 3 Micromachining technique based on the orbital motion of the diamond tip; 3.1 Introduction; 3.2 Principle of micromachining using the orbital motion of the diamond tip
3.3 Micromachining setup and test of the stage's trajectory3.3.1 Establishment of the micromachining setup and the machining procedure; 3.3.2 Test of the trajectory of the nanopiezo stage in the orbital motion; 3.4 Micromachining mechanism using the orbital motion of the tip; 3.4.1 Comparison of chip states with the conical and pyramidal tips; 3.4.2 Difference between the micromilling process and this technique; 3.4.3 Determination of the uncut chip thickness and the cutting rake angle; 3.5 Formation mechanism and control methods of burrs
3.5.1 Burr formation during machining with the conical tip3.5.2 Burr formation during machining with the pyramidal tip; 3.5.3 Methods of formation of slight burrs; 3.6 Effects of the processing parameters and fabrication of microstructures; 3.6.1 Effects of the processing parameters on machining microchannels; 3.6.2 Effect of the feed on machining microstructures; 3.6.3 Fabrication of typical microstructures; 3.7 Summary and future works; Acknowledgments; References; 4 Microelectrical discharge machining of Ti-6Al-4V: implementation of innovative machining strategies; 4.1 Introduction
4.2 Principle of electrical discharge machining4.3 Overview of micro-EDM; 4.4 Differences between EDM and micro-EDM; 4.5 System components of micro-EDM; 4.5.1 Pulse generator; 4.5.2 Servo control unit; 4.5.3 Dielectric circulating unit; 4.6 Micro-EDM process parameters; 4.6.1 Electrical process parameters; 4.6.1.1 Discharge energy; 4.6.1.2 Gap and discharge voltage; 4.6.1.3 Peak current; 4.6.1.4 Pulse duration; 4.6.1.5 Duty factor; 4.6.1.6 Pulse frequency; 4.6.1.7 Polarity; 4.6.2 Nonelectrical process parameters; 4.6.2.1 Tool electrodes; 4.6.2.2 Workpiece materials; 4.6.2.3 Dielectric fluids
Bibliography Includes bibliographical references and index
Notes Online resource; title from title page (viewed January 4, 2017)
Subject Production engineering.
Microtechnology.
Nanotechnology.
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Microtechnology
Nanotechnology
Production engineering
Form Electronic book
Author Davim, J. Paulo, editor.
ISBN 9780857094865
0857094866