Limit search to available items
Book Cover
E-book

Title A Closer Look at Quartz Crystal Microbalances
Published New York : Novinka, 2020

Copies

Description 1 online resource
Series Nanotechnology Science and Technology Ser
Nanotechnology Science and Technology Ser
Contents Intro -- Contents -- Preface -- Chapter 1 -- Principle and Application of Quartz Crystal Microbalance -- Abstract -- 1. Introduction -- 2. Characteristic of QCM -- 3. Theoretical Model of QCM -- 3.1. Mason Model -- 3.2. Kelvin-Voight Model -- 3.3. Solidified Liquid Layer (SLL) Model -- 4. Classification of QCM -- 4.1. QCM-FIA -- 4.2. QCM-D -- 4.3. QCM-A -- 4.4. EQCM -- 5. Application and Research Progress of EQCM -- 5.1. Electropolymerization -- 5.2. Electrodeposition and Dissolution -- 5.3. Electrochemical Corrosion and Protection -- 5.4. Electrochemical Adsorption and Desorption
5.5. Polymer Modified Electrode -- 5.6. Ion Transfer and Exchange Process -- 5.7. Energy Conversion and Storage -- 5.7.1. Fuel Cell -- 5.7.2. Lithium Battery -- 5.7.3. Capacitor -- 5.7.4. Solar Energy -- 5.8. Biomedicine -- 5.9. Gas Detection -- 5.10. Other Applications -- Outlook -- References -- Chapter 2 -- Quartz Crystal Microbalance-Based Sensor Applications for Micropollutants -- Abstract -- 1. Introduction -- 2. Scope of Micropollutants -- 3. Biosensors for Detecting Micropollutants -- 3.1. Optical Biosensors -- 3.2. Electrochemical Biosensors -- 3.3. Thermal Biosensors
3.4. Piezoelectric Biosensors -- 4. QCM for Micropollutants -- 4.1. QCM for Heavy Metal Ions -- 4.2. QCM for Organic Micropollutants -- 4.2.1. QCM for Pesticides Detection -- 4.2.2. QCM for Antibiotic Detection -- 4.2.3. QCM for Antidepressant Detection -- 4.2.4. QCM for Personal Care Products Detection -- 4.2.5. Challenges and Future Prospects -- Conclusion -- References -- Chapter 3 -- Mathematical Models of QCM. -- Pro-Sauerbrey and Viscoelastic Structures -- Abstract -- 1. Introduction -- 2. Theoretical Part -- 2.1. Derivation of the Sauerbrey Equation
2.2. Output of the Modified Sauerbrey Equation -- 2.3. Determination of Oscillator Oscillation Amplitude -- 2.3.1. Solution of the System of Ordinary Differential Equations without Taking into Account Friction Forces -- 2.3.2. Solution of the System of Ordinary Differential Equations Taking into Account Friction Forces -- 3. Example Applications of a Mathematical Model -- 3.1. One of the Possible Applications of the Presented Mathematical Models, Let's Consider an Example of Work [8] -- 3.1.1. Determination of the Natural Frequency of Oscillation of the Layer -- 3.1.2. Calculation
3.1.3. Calculation of Resonant Frequencies -- 3.1.4 Calculation of the Young's Modulus of the Layer Material -- 3.1.5. Calculation the Mass of the Layer -- 3.1.6. Construction of the Calculated Admittance Spectrum -- 3.1.7. Construction of the Calculated Phase Angle Spectrum -- 3.2. Another Example of the Application of the Presented Mathematical Model Will Be Given Using the Experimental Results of the Work [12] -- 3.2.1. Determination of the Multi-Layer Natural Frequency -- 3.2.2. Calculating and -- 3.2.3. Calculating the Multi-Layer Friction Coefficient
Subject Quartz crystal microbalances.
Oscillators, Crystal.
Microbalances.
Microbalances
Oscillators, Crystal
Quartz crystal microbalances
Form Electronic book
Author Mathiasen, Selam B., editor
ISBN 1536174548
9781536174540