Limit search to available items
Book Cover
E-book

Title Recent advances in PMOS negative bias temperature instability : characterization and modeling of device architecture, material and process impact / Souvik Mahapatra, editor
Published Singapore : Springer, [2022]
©2022

Copies

Description 1 online resource : illustrations (chiefly color)
Contents Characterization of NBTI Parametric Drift -- BAT Framework Modeling of Gate First HKMG Si and SiGe Channel FDSOI MOSFETs -- BTI Analysis Tool (BAT) Model Framework -- BAT Framework Modeling of RMG HKMG SOI FinFETs -- BAT Framework Modeling of RMG HKMG GAA-SNS FETs -- BAT Framework Modeling of RMG HKMG Si and SiGe Channel FinFETs -- BAT Framework Modeling of Gate First HKMG Si Channel MOSFETs -- BAT Framework Modeling of AC NBTI: Stress Mode, Duty Cycle and Frequency -- BAT Framework Modeling of Dimension Scaling in FinFETs and GAA-SNS FETs -- BTI Analysis Tool (BAT) Model Framework-Generation of Interface Traps -- Device Architecture, Material and Process Dependencies of NBTI Parametric Drift -- Physical Mechanism of NBTI Parametric Drift -- BAT Framework Modeling of Gate First HKMG Si-capped SiGe Channel MOSFETs -- BTI Analysis Tool (BAT) Model Framework-Interface Trap Occupancy and Hole Trapping
Summary This book covers advances in Negative Bias Temperature Instability (NBTI) and will prove useful to researchers and professionals in the semiconductor devices areas. NBTI continues to remain as an important reliability issue for CMOS transistors and circuits. Development of NBTI resilient technology relies on utilizing suitable stress conditions, artifact free measurements and accurate physics-based models for the reliable determination of degradation at end-of-life, as well as understanding the process, material and device architectural impacts. This book discusses: Ultra-fast measurements and modelling of parametric drift due to NBTI in different transistor architectures: planar bulk and FDSOI p-MOSFETs, p-FinFETs and GAA-SNS p-FETs, with Silicon and Silicon Germanium channels. BTI Analysis Tool (BAT), a comprehensive physics-based framework, to model the measured time kinetics of parametric drift during and after DC and AC stress, at different stress and recovery biases and temperature, as well as pulse duty cycle and frequency. The Reaction Diffusion (RD) model is used for generated interface traps, Transient Trap Occupancy Model (TTOM) for charge occupancy of the generated interface traps and their contribution, Activated Barrier Double Well Thermionic (ABDWT) model for hole trapping in pre-existing bulk gate insulator traps, and Reaction Diffusion Drift (RDD) model for bulk trap generation in the BAT framework; NBTI parametric drift is due to uncorrelated contributions from the trap generation (interface, bulk) and trapping processes. Analysis and modelling of Nitrogen incorporation into the gate insulator, Germanium incorporation into the channel, and mechanical stress effects due to changes in the transistor layout or device dimensions; similarities and differences of (100) surface dominated planar and GAA MOSFETs and (110) sidewall dominated FinFETs are analysed
Notes Includes index
Online resource; title from PDF title page (SpringerLink, viewed December 9, 2021)
Subject Metal oxide semiconductors, Complementary -- Effect of temperature on
Metal oxide semiconductors, Complementary -- Reliability
Metal oxide semiconductors, Complementary -- Reliability
Form Electronic book
Author Mahapatra, Souvik, editor.
ISBN 9789811661204
9811661200