Table of Contents |
1. | Infobiotics Workbench: A P Systems Based Tool for Systems and Synthetic Biology / Marian Gheorghe | 1 |
1.1. | Introduction | 1 |
1.2. | Overview | 2 |
1.2.1. | Mathematical Continuous Models | 3 |
1.2.2. | Stochastic Discrete Models | 3 |
1.2.3. | Executable Modeling Formalisms | 4 |
1.3. | Lattice Population P Systems | 8 |
1.4. | Infobiotics Workbench | 14 |
1.4.1. | Modelling in LPP Systems | 16 |
1.4.2. | Simulation | 16 |
1.4.3. | Model Checking | 20 |
1.4.4. | Optimisation | 22 |
1.5. | Case Study | 25 |
1.5.1. | LPP Model | 26 |
1.5.2. | Simulations | 27 |
1.5.3. | Model Checking | 28 |
1.5.4. | Supplementary Material | 32 |
1.6. | Discussions and Conclusions | 33 |
| References | 36 |
2. | Statistical Model Checking of Membrane Systems with Peripheral Proteins: Quantifying the Role of Estrogen in Cellular Mitosis and DNA Damage / Sean Sedwards | 43 |
2.1. | Membrane Systems with Peripheral Proteins | 43 |
2.1.1. | Formal Language Preliminaries | 46 |
2.1.2. | Membrane Systems with Peripheral and Integral Proteins | 47 |
2.2. | Statistical Model Checking for Membrane Systems with Peripheral Proteins | 53 |
2.2.1. | Temporal Logic as a Query Language | 53 |
2.3. | A Case Study: The Role of Estrogen in Cellular Mitosis and DNA Damage | 54 |
2.4. | Methodology and Results | 57 |
2.5. | Conclusions | 61 |
| References | 62 |
3. | Molecular Diffusion and Compartmentalization in Signal Transduction Pathways: An Application of Membrane Systems to the Study of Bacterial Chemotaxis / Giancarlo Mauri | 65 |
3.1. | Introduction | 66 |
3.2. | A Multivolume Modeling Approach with Membrane Systems | 68 |
3.2.1. | Membrane Systems | 68 |
3.2.2. | τ-DPP | 69 |
3.3. | The Modeling of Bacterial Chemotaxis | 73 |
3.3.1. | Bacterial Chemotaxis | 74 |
3.3.2. | A Mechanistic Model | 76 |
3.3.3. | Multivolume Model: Diffusion in a Signal Transduction Pathway | 79 |
3.4. | Results | 82 |
3.4.1. | Simulations of Υsv | 82 |
3.4.2. | The Interplay Between Stochastic Fluctuations and the Numher of Bacterial Flagella in Υsv | 86 |
3.4.3. | Simulations of ΥMV | 90 |
3.5. | Conclusion | 93 |
| References | 94 |
4. | Membrane System-Based Models for Specifying Dynamical Population Systems / L. Valencia-Cabrera | 97 |
4.1. | Introduction | 98 |
4.2. | Preliminaries | 100 |
4.3. | A P Systems-Based Probabilistic Modelling Framework | 100 |
4.3.1. | PDP Systems | 101 |
4.3.2. | Additional Definitions | 103 |
4.3.3. | Some Properties of PDP Systems Models | 104 |
4.4. | An Inference Engine: The DCBA Algorithm | 105 |
4.5. | Simulation of PDP Systems | 110 |
4.5.1. | P-Lingua, and the pLinguaCore Library | 110 |
4.5.2. | The Visual Environment MeCoSim | 112 |
4.5.3. | Accelerating PDP Systems Simulations | 113 |
4.6. | A Case Study: Pandemics | 113 |
4.6.1. | Design of a PDP Modelling Pandemics | 114 |
4.6.2. | Results | 125 |
4.7. | Conclusions and Perspectives | 129 |
| References | 131 |
5. | Membrane Systems and Tools Combining Dynamical Structures with Reaction Kinetics for Applications in Chronobiology / Peter Dittrich | 133 |
5.1. | Introduction | 134 |
5.2. | The KaiABC Core Oscillator: A Circadian Clock Component with Dynamical Molecular Structures | 135 |
5.2.1. | Biological Background | 135 |
5.2.2. | Membrane Systems ΠCSM for Cell Signalling Modules | 136 |
5.2.3. | Applying ΠCSM to a KaiABC Core Oscillator Model | 143 |
5.2.4. | Simulation Case Study | 145 |
5.3. | Circadian Clocks as Generalised Frequency Control Systems | 147 |
5.3.1. | A Controllable Goodwin-Type Core Oscillator | 147 |
5.3.2. | Chemical Frequency Control by Phase-Locked Loops | 149 |
5.3.3. | Exploring Circadian Clock's Entrainment Behaviour by Simulation Studies | 153 |
5.4. | Cell Signalling and Gene Regulatory Networks: Logic Circuits in Chronobiological Information Processing | 157 |
5.4.1. | The General Principle of Cell Signalling in vivo | 158 |
5.4.2. | Modelling a Bistable Toggle Switch by a Gene Regulatory Network with Two Feedback Loops | 160 |
5.4.3. | In Vivo Implementation of a Bistable Toggle Switch | 162 |
5.5. | Spatial Rule-Based Simulator Software SRSim at a Glance | 164 |
5.6. | Envisioning an Analysis of Membrane System's Static and Dynamical Behaviour by a Constrained-Based Approach | 168 |
5.7. | Conclusions | 170 |
| References | 170 |
6. | Biochemical Networks Discrete Modeling Inspired by Membrane Systems / Mihaela Paun | 175 |
6.1. | Introduction | 176 |
6.1.1. | Modeling with Differential Equations | 177 |
6.1.2. | Stochastic Methods and the Gillespie Algorithm | 178 |
6.1.3. | Improving the Gillespie Algorithm | 179 |
6.1.4. | Our Work | 180 |
6.2. | Membrane Systems as Cell Simulators | 180 |
6.2.1. | Description of the NWT Algorithm | 182 |
6.2.2. | Maintaining the Min-heap | 184 |
6.2.3. | Memory Enhancement | 185 |
6.2.4. | Case 1: Deterministic Memory Enhancement | 186 |
6.2.5. | Case 2: Nondeterministic Memory Enhancement | 188 |
6.3. | Comparing the NWT Algorithm with the ODE and Gillespie's Algorithm | 191 |
6.4. | Modeling FAS-Induced Apoptosis | 194 |
6.4.1. | Apoptotic Signaling Cascades | 195 |
6.4.2. | Fas-Mediated Apoptosis | 195 |
6.4.3. | Results of Discrete Method | 197 |
6.4.4. | Bcl-2's Effects on the Type II Pathway | 198 |
6.4.5. | Modeling the Behavior of the Type I Pathway | 200 |
6.4.6. | Summary for the FAS Simulation | 201 |
6.5. | HIV-1 Effects on the FAS Pathway | 203 |
6.5.1. | A Brief History of HIV | 203 |
6.5.2. | AIDS Pathogenesis | 204 |
6.5.3. | HIV-1 Infection | 205 |
6.5.4. | HIV-1-Related Effects on the Fas Pathway | 208 |
6.5.5. | Modeling Results | 208 |
6.5.6. | Summary for Simulating HIV Latency | 213 |
6.6. | Conclusions and Final Remarks | 214 |
6.6.1. | Extensions on the HIV Model | 214 |
6.6.2. | Calcium's Role in Apoptosis | 216 |
| References | 216 |
7. | MP Modelling for Systems Biology: Two Case Studies / Aliccia Bollig-Fischer | 223 |
7.1. | Introduction | 223 |
7.1.1. | Log--Gain Stoichiometric Stepwise Regression (LGSS) | 226 |
7.2. | The Glucose/Insulin Dynamics in the Intravenous Glucose Tolerance Test (IVGTT) | 228 |
7.2.1. | Mathematical Models of the Intravenous Glucose Tolerance Test | 230 |
7.2.2. | MP Modelling of IVGTT | 231 |
7.3. | MP Modelling of Gene Networks | 236 |
7.3.1. | From Raw Data to MP Models | 239 |
7.4. | Conclusion and Ongoing Research | 242 |
| References | 243 |
8. | Modelling and Analysis of E. coli Respiratory Chain / Simon Coakley | 247 |
8.1. | Introduction | 248 |
8.2. | Background | 249 |
8.2.1. | kP Systems | 249 |
8.2.2. | X-Machines | 252 |
8.3. | General Description of E. coli | 252 |
8.4. | FLAME Simulations of E. coli Respiratory Chain | 254 |
8.5. | A Kernel P System Corresponding to E. coli | 257 |
8.6. | Modelling, Simulation and Verification | 258 |
8.6.1. | Implementation in Event-B for ProB | 258 |
8.6.2. | Implementation in Promela for Spin | 260 |
8.6.3. | Simulation Results | 261 |
8.6.4. | Verification Results | 262 |
8.6.5. | Event-B Versus Promela | 264 |
8.7. | Conclusions | 264 |
| References | 265 |