Description |
1 online resource (xxvi, 347 pages) : illustrations (some color) |
Contents |
1. Introduction -- 2. Understanding the structure of survey data -- 3. Shallow analyses of survey data -- 4. Deep analyses of survey data -- 5. Conclusion and wrap-up |
Summary |
This book develops survey data analysis tools in Python, to create and analyze cross-tab tables and data visuals, weight data, perform hypothesis tests, and handle special survey questions such as Check-all-that-Apply. In addition, the basics of Bayesian data analysis and its Python implementation are presented. Since surveys are widely used as the primary method to collect data, and ultimately information, on attitudes, interests, and opinions of customers and constituents, these tools are vital for private or public sector policy decisions. As a compact volume, this book uses case studies to illustrate methods of analysis essential for those who work with survey data in either sector. It focuses on two overarching objectives: Demonstrate how to extract actionable, insightful, and useful information from survey data; and Introduce Python and Pandas for analyzing survey data |
Bibliography |
Includes bibliographical references and index |
Notes |
Online resource; title from PDF title page (SpringerLink, viewed September 14, 2022) |
Subject |
Market surveys -- Data processing
|
|
Python (Computer program language)
|
|
Análisis de mercado -- Datos-Tratamiento
|
|
Python (Lenguaje de programación)
|
|
Market surveys -- Data processing
|
|
Python (Computer program language)
|
Form |
Electronic book
|
ISBN |
9783030762674 |
|
303076267X |
|
9788303076267 |
|
8303076264 |
|