Limit search to available items
Book Cover
E-book

Title Energy efficient distributed computing systems / edited by Albert Y. Zomaya, Young Choon Lee
Published Hoboken, N.J. : Wiley, ©2012
Online access available from:
Wiley Online Books    View Resource Record  

Copies

Description 1 online resource (813 pages) : illustrations
Contents 880-01 Chapter 1. Power Allocation and Task Scheduling on Multiprocessor Computers with Energy and Time Constraints -- Chapter 2. Power-Aware High Performance Computing -- Chapter 3. Energy Efficiency in HPC Systems -- Chapter 4. A Stochastic Framework for Hierarchical System-Level Power Management -- Chapter 5. Energy-Efficient Reservation Infrastructure for Grids, Clouds, and Networks -- Chapter 6. Energy-Efficient Job Placement on Clusters, Grids, and Clouds -- Chapter 7. Comparison and Analysis of Greedy Energy-Efficient Scheduling Algorithms for Computational Grids -- Chapter 8. Toward Energy-Aware Scheduling Using Machine Learning -- Chapter 9. Energy Efficiency Metrics for DATA Centers -- Chapter 10. Autonomic Green Computing in Large-Scale Data Centers -- Chapter 11. Energy and Thermal Aware Scheduling in Data Centers -- Chapter 12. QOS-Aware Power Management in Data Centers -- Chapter 13. Energy-Efficient Storage Systems for Data Centers -- Chapter 14. Autonomic Energy/Performance Optimizations for Memory in Servers -- Chapter 15. ROD: A Practical Approach to Improving Reliability of Enegery-Efficient Parallel Disk Systems -- Chapter 16. Embracing the Memory and I/O Walls for Energy-Efficient Scientific Computing -- Chapter 17. Multiple Frequency Selection in DVFS-Enabled Processors to Minimize Energy Consumption -- Chapter 18. The Paramountcy of Reconfigurable Computing -- Chapter 19. Workload Clustering for Increasing Energy Savings on Embedded MPSOCS -- Chapter 20. Energy-Efficient Internet Infrastructure -- Chapter 21. Demand Response in the Smart Grid: A Distributed Computing Perspective -- Chapter 22. Resource Management for Distributed Mobile Computing -- Chapter 23. An Energy-Aware Framework for Mobile Data Mining -- Chapter 24. Energy Awareness and Efficiency in Wireless Sensor Networks: From Physical Devices to the Communication Link -- Chapter 25. Network-Wide Strategies for Enrgy Efficiency in Wireless Sensor Networks -- Chapter 26. Energy Management in Heterogeneous Wireless Health Care Networks
880-01/(S Contents note continued: 9.1.3.1. Electric power -- 9.1.3.2. Heat removal -- 9.1.4. Energy Efficiency -- 9.2. Fundamentals of Metrics -- 9.2.1. Demand and Constraints on Data Center Operators -- 9.2.2. Metrics -- 9.2.2.1. Criteria for good metrics -- 9.2.2.2. Methodology -- 9.2.2.3. Stability of metrics -- 9.3. Data Center Energy Efficiency -- 9.3.1. Holistic IT Efficiency Metrics -- 9.3.1.1. Fixed versus proportional overheads -- 9.3.1.2. Power versus energy -- 9.3.1.3. Performance versus productivity -- 9.3.2. Code of Conduct -- 9.3.2.1. Environmental statement -- 9.3.2.2. Problem statement -- 9.3.2.3. Scope of the CoC -- 9.3.2.4. Aims and objectives of CoC -- 9.3.3. Power Use in Data Centers -- 9.3.3.1. Data center IT power to utility power relationship -- 9.3.3.2. Chiller efficiency and external temperature -- 9.4. Available Metrics -- 9.4.1. Green Grid -- 9.4.1.1. Power usage effectiveness (PUE) -- 9.4.1.2. Data center efficiency (DCE) -- 9.4.1.3. Data center infrastructure efficiency (DCiE) -- 9.4.1.4. Data center productivity (DCP) -- 9.4.2. McKinsey -- 9.4.3. Uptime Institute -- 9.4.3.1. Site infrastructure power overhead multiplier (SI-POM) -- 9.4.3.2. IT hardware power overhead multiplier (H-POM) -- 9.4.3.3. DC hardware compute load per unit of computing work done -- 9.4.3.4. Deployed hardware utilization ratio (DH-UR) -- 9.4.3.5. Deployed hardware utilization efficiency (DH-UE) -- 9.5. Harmonizing Global Metrics for Data Center Energy Efficiency -- References -- 10. Autonomic Green Computing In Large-Scale Data Centers / Youssif Al-Nashif -- 10.1. Introduction -- 10.2. Related Technologies and Techniques -- 10.2.1. Power Optimization Techniques in Data Centers -- 10.2.2. Design Model -- 10.2.3. Networks -- 10.2.4. Data Center Power Distribution -- 10.2.5. Data Center Power-Efficient Metrics -- 10.2.6. Modeling Prototype and Testbed -- 10.2.7. Green Computing -- 10.2.8. Energy Proportional Computing -- 10.2.9. Hardware Virtualization Technology -- 10.2.10. Autonomic Computing -- 10.3. Autonomic Green Computing: A Case Study -- 10.3.1. Autonomic Management Platform -- 10.3.1.1. Platform architecture -- 10.3.1.2. DEVS-based modeling and simulation platform -- 10.3.1.3. Workload generator -- 10.3.2. Model Parameter Evaluation -- 10.3.2.1. State transitioning overhead -- 10.3.2.2. VM template evaluation -- 10.3.2.3. Scalability analysis -- 10.3.3. Autonomic Power Efficiency Management Algorithm (Performance Per Watt) -- 10.3.4. Simulation Results and Evaluation -- 10.3.4.1. Analysis of energy and performance trade-offs -- 10.4. Conclusion and Future Directions -- References -- 11. Energy And Thermal Aware Scheduling In Data Centers / Tajana S. Rosing -- 11.1. Introduction -- 11.2. Related Work -- 11.3. Intermachine Scheduling -- 11.3.1. Performance and Power Profile of VMs -- 11.3.2. Architecture -- 11.3.2.1. vgnode -- 11.3.2.2. vgxen -- 11.3.2.3. vgdom -- 11.3.2.4. vgserv -- 11.4. Intramachine Scheduling -- 11.4.1. Air-Forced Thermal Modeling and Cost -- 11.4.2. Cooling Aware Dynamic Workload Scheduling -- 11.4.3. Scheduling Mechanism -- 11.4.4. Cooling Costs Predictor -- 11.5. Evaluation -- 11.5.1. Intermachine Scheduler (vGreen) -- 11.5.2. Heterogeneous Workloads -- 11.5.2.1. Comparison with DVFS policies -- 11.5.2.2. Homogeneous workloads -- 11.5.3. Intramachine Scheduler (Cool and Save) -- 11.5.3.1. Results -- 11.5.3.2. Overhead of CAS -- 11.6. Conclusion -- References -- 12. QOS-Aware Power Management In Data Centers / Cheng-Zhong Xu -- 12.1. Introduction -- 12.2. Problem Classification -- 12.2.1. Objective and Constraint -- 12.2.2. Scope and Time Granularities -- 12.2.3. Methodology -- 12.2.4. Power Management Mechanism -- 12.3. Energy Efficiency -- 12.3.1. Energy-Efficiency Metrics -- 12.3.2. Improving Energy Efficiency -- 12.3.2.1. Energy minimization with performance guarantee -- 12.3.2.2. Performance maximization under power budget -- 12.3.2.3. Trade-off between power and performance -- 12.3.3. Energy-Proportional Computing -- 12.4. Power Capping -- 12.5. Conclusion -- References -- 13. Energy-Efficient Storage Systems For Data Centers / Anand Sivasubramaniam -- 13.1. Introduction -- 13.2. Disk Drive Operation and Disk Power -- 13.2.1. Overview of Disk Drives -- 13.2.2. Sources of Disk Power Consumption -- 13.2.3. Disk Activity and Power Consumption -- 13.3. Disk and Storage Power Reduction Techniques -- 13.3.1. Exploiting the STANDBY State -- 13.3.2. Reducing Seek Activity -- 13.3.3. Achieving Energy Proportionality -- 13.3.3.1. Hardware approaches -- 13.3.3.2. Software approaches -- 13.4. Using Nonvolatile Memory and Solid-State Disks -- 13.5. Conclusions -- References -- 14. Autonomic Energy/Performance Optimizations For Memory In Servers / Mazin Yousif -- 14.1. Introduction -- 14.2. Classifications of Dynamic Power Management Techniques -- 14.2.1. Heuristic and Predictive Techniques -- 14.2.2. QoS and Energy Trade-Offs -- 14.3. Applications of Dynamic Power Management (DPM) -- 14.3.1. Power Management of System Components in Isolation -- 14.3.2. Joint Power Management of System Components -- 14.3.3. Holistic System-Level Power Management -- 14.4. Autonomic Power and Performance Optimization of Memory Subsystems in Server Platforms -- 14.4.1. Adaptive Memory Interleaving Technique for Power and Performance Management -- 14.4.1.1. Formulating the optimization problem -- 14.4.1.2. Memory appflow -- 14.4.2. Industry Techniques -- 14.4.2.1. Enhancements in memory hardware design -- 14.4.2.2. Adding more operating states -- 14.4.2.3. Faster transition to and from low power states -- 14.4.2.4. Memory consolidation -- 14.5. Conclusion -- References -- 15. ROD: A Practical Approach To Improving Reliability Of Energy-Efficient Parallel Disk Systems / Xiao Qin -- 15.1. Introduction -- 15.2. Modeling Reliability of Energy-Efficient Parallel Disks -- 15.2.1. MINT Model -- 15.2.1.1. Disk utilization -- 15.2.1.2. Temperature -- 15.2.1.3. Power-state transition frequency -- 15.2.1.4. Single disk reliability model -- 15.2.2. MAID, Massive Arrays of Idle Disks -- 15.3. Improving Reliability of MAID via Disk Swapping -- 15.3.1. Improving Reliability of Cache Disks in MAID -- 15.3.2. Swapping Disks Multiple Times -- 15.4. Experimental Results and Evaluation -- 15.4.1. Experimental Setup -- 15.4.2. Disk Utilization -- 15.4.3. Single Disk Swapping Strategy -- 15.4.4. Multiple Disk Swapping Strategy -- 15.5. Related Work -- 15.6. Conclusions -- References -- 16. Embracing The Memory And I/O Walls For Energy-Efficient Scientific Computing / Wu-Chun Feng -- 16.1. Introduction -- 16.2. Background and Related Work -- 16.2.1. DVFS-Enabled Processors -- 16.2.2. DVFS Scheduling Algorithms -- 16.2.3. Memory-Aware, Interval-Based Algorithms -- 16.3. β-Adaptation: A New DVFS Algorithm -- 16.3.1. Compute-Boundedness Metric, β -- 16.3.2. Frequency Calculating Formula, f* -- 16.3.3. Online β Estimation -- 16.3.4. Putting It All Together -- 16.4. Algorithm Effectiveness -- 16.4.1. Comparison to Other DVFS Algorithms -- 16.4.2. Frequency Emulation -- 16.4.3. Minimum Dependence to the PMU -- 16.5. Conclusions and Future Work -- References -- 17. Multiple Frequency Selection In Dvfs-Enabled Processors To Minimize Energy Consumption / Javid Taheri -- 17.1. Introduction -- 17.2. Energy Efficiency in HPC Systems -- 17.3. Exploitation of Dynamic Voltage-Frequency Scaling -- 17.3.1. Independent Slack Reclamation -- 17.3.2. Integrated Schedule Generation -- 17.4. Preliminaries -- 17.4.1. System and Application Models -- 17.4.2. Energy Model -- 17.5. Energy-Aware Scheduling via DVFS -- 17.5.1. Optimum Continuous Frequency -- 17.5.2. Reference Dynamic Voltage-Frequency Scaling (RDVFS) -- 17.5.3. Maximum-Minimum-Frequency for Dynamic Voltage-Frequency Scaling (MMF-DVFS) -- 17.5.4. Multiple Frequency Selection for Dynamic Voltage-Frequency Scaling (MFS-DVFS) -- 17.5.4.1. Task eligibility -- 17.6. Experimental Results -- 17.6.1. Simulation Settings -- 17.6.2. Results -- 17.7. Conclusion -- References -- 18. Paramountcy Of Reconfigurable Computing / Reiner Hartenstein -- 18.1. Introduction -- 18.2. Why Computers are Important -- 18.2.1. Computing for a Sustainable Environment -- 18.3. Performance Progress Stalled -- 18.3.1. Unaffordable Energy Consumption of Computing -- 18.3.2. Crashing into the Programming Wall -- 18.4. Tail is Wagging the Dog (Accelerators) -- 18.4.1. Hardwired Accelerators -- 18.4.2. Programmable Accelerators -- 18.5. Reconfigurable Computing -- 18.5.1. Speedup Factors by FPGAs -- 18.5.2. Reconfigurable Computing Paradox -- 18.5.3. Saving Energy by Reconfigurable Computing -- 18.5.3.1. Traditional green computing -- 18.5.3.2. role of graphics processors -- 18.5.3.3. Wintel versus ARM -- 18.5.4. Reconfigurable Computing is the Silver Bullet -- 18.5.4.1. new world model of computing -- 18.5.5. Twin-Paradigm Approach to Tear Down the Wall -- 18.5.6. Mass Movement Needed as Soon as Possible -- 18.5.6.1. Legacy software from the mainframe age -- 18.5.7. How to Reinvent Computing -- 18.6. Conclusions -- References -- 19. Workload Clustering For Increasing Energy Savings On Embedded Mpsocs / Sri Hari Krishna Narayanan -- 19.1. Introduction -- 19.2. Embedded MPSoC Architecture, Execution Model, and Related Work
Summary "The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005. From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems. These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems. This book brings together a group of outstanding researchers that investigate the different facets of green and energy efficient distributed computing. Key features: One of the first books of its kind Features latest research findings on emerging topics by well-known scientists Valuable research for grad students, postdocs, and researchers Research will greatly feed into other technologies and application domains"-- Provided by publisher
Bibliography Includes bibliographical references and index
Notes English
Print version record
Subject Computer networks -- Energy conservation
Electronic data processing -- Distributed processing -- Energy conservation
Green technology.
COMPUTERS -- Client-Server Computing.
Green technology
Ordinadors, Xarxes d' -- Estalvi d'energia.
Informàtica -- Estalvi d'energia.
Ecotecnologia.
Energia -- Estalvi.
Form Electronic book
Author Zomaya, Albert Y
Lee, Young-Choon, 1973-
ISBN 9781118342015
1118342011
9781118341988
1118341988
1283546019
9781283546010
9786613858467
6613858463
1118342003
9781118342008