Description |
1 online resource (257 pages) |
Contents |
1 Fundamental Equations; 1.1 Introduction and Motivation; 1.2 Stress and Strain; 1.3 Equations of Equilibrium; 1.4 Strain Energy; 1.4.1 Uniqueness; 1.4.2 Extremum Principles; 1.5 Betti's Reciprocal Theorem; 1.6 Integral Representation; 1.6.1 Classification of Integral Equations; 1.6.2 Kelvin State; 1.6.3 Integral Representation; 1.6.4 Rigid Inclusion; 1.6.5 Eliminating Single or Double Layer; 1.7 Single and Double Layer Potentials; 1.7.1 Single Layer; 1.7.2 Double Layer; 1.7.3 Liapunov-Tauber Theorem; 1.8 Boundary Integral Equations; 1.8.1 Direct BEM; 1.8.2 Indirect BEM |
|
880-01 1.10.15 Elastic Inclusion1.10.16 Constant c[sub(ij)]; 1.10.17 Thin, Rigid Inclusion; 1.10.18 Liapunov-Tauber Theorem; 2 Multipole Expansion and Rigid Inclusions; 2.1 Singularity Solutions; 2.1.1 Papkovich-Neuber Representation; 2.1.2 Potential Deformation; 2.1.3 Rotlet Deformation; 2.1.4 Kelvinlet Deformation; 2.1.5 Half-Space Solutions; 2.1.6 Interior Deformation; 2.2 Multipole Expansion; 2.2.1 Stresslet; 2.3 Spherical Rigid Inclusion; 2.3.1 Translating a Rigid Sphere; 2.3.2 Rotating a Rigid Sphere; 2.3.3 Rigid Sphere in a Linear Deformation; 2.3.4 Rigid Sphere in a Quadratic Ambient Field |
|
880-01/(S 1.9 Spectral Properties1.9.1 Banach's Theorem; 1.9.2 λ = -1 ; 1.9.3 λ = +1; 1.9.4 Type II Problems; 1.9.5 Spectral Radius of Κ; 1.10 Exercises; 1.10.1 Rigid-Body Displacement; 1.10.2 Stretching; 1.10.3 Simple Shearing; 1.10.4 Moduli of Elasticity; 1.10.5 Integral Representation; 1.10.6 Transmission of Force and Torque; 1.10.7 Reciprocal Relation; 1.10.8 Translating Rigid Sphere 1; 1.10.9 Translating Rigid Sphere 2; 1.10.10 Kelvin's Solution; 1.10.11 On Green's Equations; 1.10.12 Papkovich-Neuber Representation; 1.10.13 Galerkin Vector; 1.10.14 Self-Adjoint Property of G |
|
2.3.5 Translating an Elastic Spherical Inclusion2.4 Exercises; 2.4.1 Navier Solutions; 2.4.2 Navier Solutions; 2.4.3 Navier Solutions; 2.4.4 Galerkin Vector; 2.4.5 Force and Torque on a Rigid Spherical Inclusion; 2.4.6 Rigid Spherical Inclusion in High-Order Field; 3 Faxén Relations and Ellipsoidal Inclusions; 3.1 Faxén Relations; 3.2 Rigid Spherical Inclusion; 3.3 Rigid Ellipsoidal Inclusion; 3.3.1 Singularity Solution for Translation; 3.3.2 Singularity Solution for Linear Ambient Field; 3.3.3 Degenerate Cases; 3.3.4 Faxén Relations for the Rigid Ellipsoid |
|
3.3.5 Interactions between Two Ellipsoids3.4 Exercises; 3.4.1 Traction Functionals; 3.4.2 Faxén Relations for Torque and Stresslet; 3.4.3 Multipole Expansion for Ellipsoids; 3.4.4 Tractions for the Translating Ellipsoid; 4 Load Transfer Problem and Boundary Collocation; 4.1 The Method of Reflection; 4.2 Load Transfer between Two Spheres; 4.2.1 Far Field by Reflection; 4.2.2 Near Touching; 4.3 Kelvin Solutions; 4.3.1 Spherical Harmonics; 4.3.2 Kelvin's General Solutions; 4.4 Boundary Collocation; 4.4.1 Twin Multipole Expansions; 4.4.2 Collocation Equations for Translation Problems |
Summary |
1. Fundamental Equations2. Multipole Expansion and Rigid Inclusions3. Faxen Relations and Ellipsoidal Inclusions4. Load Transfer Problem and Boundary Collocation5. Completed Double Layer Boundary Element Method6. Numerical Implementation7. Some Applications of CDL-BIEM |
Notes |
4.5 Comparison |
|
Print version record |
Subject |
Elastic solids -- Inclusions -- Mathematical models
|
|
Elasticity.
|
|
Fluid dynamics.
|
|
Elasticity
|
|
Hydrodynamics
|
|
Elasticity
|
|
Fluid dynamics
|
Form |
Electronic book
|
Author |
Kim, Sangtae
|
ISBN |
9780195358070 |
|
0195358074 |
|