Limit search to available items
Book Cover
E-book
Author Rahmatalla, Salam

Title Prehospital transport and whole-body vibration / Salam Rahmatalla
Published London : Academic Press, [2022]

Copies

Description 1 online resource
Contents Front Cover -- Prehospital Transport and Whole-Body Vibration -- Copyright Page -- Contents -- Preface -- Acknowledgments -- 1 Fundamentals of motion and biomechanics -- 1.1 Introduction -- 1.2 Basic vector algebra -- 1.2.1 Vector addition and subtraction -- 1.2.2 Vector multiplication -- 1.2.3 Projection of a vector in a certain direction -- 1.2.4 Geometric representation of vectors -- 1.2.5 Cross product -- 1.2.6 Vector calculus -- 1.2.7 Derivative of a unit vector -- 1.2.8 Matrix algebra -- 1.3 Complex numbers -- 1.3.1 Hermitian matrix -- 1.3.2 Unitary matrix -- 1.3.3 Numerical differentiation of time signals -- 1.3.4 Motion of a particle -- 1.3.5 Displacement, velocity, and acceleration -- 1.3.6 Curvilinear motion -- 1.3.6.1 Tangential and normal components -- 1.3.6.2 Polar components -- 1.4 Forces and motion -- 1.4.1 Kinetics of rigid bodies -- 1.4.2 Forces and motion of human-body segments -- 1.5 Basic statistics -- 1.5.1 Mean or average -- 1.5.2 Median -- 1.5.3 Range, variance, and standard deviation -- 1.5.4 Root mean square -- 1.5.5 Regression analysis: least-squares line fitting -- 1.5.6 Distribution of data -- 1.5.7 Confidence intervals -- 1.5.8 Probability value -- 1.6 Time and frequency domain analysis -- 1.6.1 Fourier transform -- 1.7 Vibration fundamentals -- 1.7.1 Random vibration analysis -- 1.7.2 Equivalent system -- 1.7.3 Human modeling in vibration -- 1.7.4 Modeling of human head-neck -- 1.7.5 Supine-human model -- 1.7.6 Human coordinate system in whole-body vibration -- 1.8 Chapter summary -- References -- 2 Measurement of human response to vibration -- 2.1 Introduction -- 2.1.1 Historical background -- 2.2 Traditional measurement techniques in WBV -- 2.2.1 Accelerometers -- 2.2.2 AC and DC accelerometers -- 2.2.3 Limitations of accelerometers in WBV -- 2.3 Marker-based motion capture
2.3.1 Velocity and acceleration from markers -- 2.3.2 Methodology of using marker displacement to calculate acceleration -- 2.3.3 Case study of motion capture of seated subjects -- 2.3.4 Results: validation of acceleration using accelerometers and markers -- 2.3.5 Virtual markers -- 2.3.6 Methodology of virtual markers -- 2.3.7 Case study of virtual markers -- 2.3.7.1 Data collection -- 2.3.7.2 Results -- 2.4 Inertial sensors -- 2.4.1 Transformation matrices from inertial sensors -- 2.4.2 Case study: removing gravity components from accelerometer measurements -- 2.5 Introduction to the concept of a hybrid system -- 2.5.1 Hybrid marker-accelerometer system -- 2.5.2 Static testing of hybrid systems -- 2.5.3 Dynamic testing of a hybrid system -- 2.5.4 Case study: simulated real-life application of hybrid system -- 2.5.5 Case study: measurement of a supine human under whole-body vibration -- 2.5.6 Motion platform (shaking table) -- 2.5.7 Subject preparation -- 2.5.8 Sensor placement and data collection -- 2.6 Summary and concluding remarks -- References -- 3 Biodynamics of supine humans subjected to vibration and shocks -- 3.1 Introduction -- 3.2 Biodynamical evaluation functions -- 3.2.1 Transmissibility -- 3.2.2 Single input-single output transmissibility -- 3.2.3 3D-multiple input-3D-multiple output transmissibility -- 3.2.4 Single-input-3D-multiple output transmissibility -- 3.2.5 6D-multiple input-6D-multiple output transmissibility -- 3.2.6 Effective transmissibility -- 3.2.7 Case study: effective transmissibility -- 3.2.7.1 Single input-3D multiple output condition -- 3.2.7.2 3D-multiple input-3D-multiple output condition -- 3.2.7.3 6D-multiple input-6D-multiple output condition -- 3.2.8 Apparent mass -- 3.2.9 Driving point mechanical impedance -- 3.2.10 Absorbed power -- 3.3 Experimentation in supine transport -- 3.3.1 Experimental setup
3.3.2 Effect of vibration and immobilization on human biodynamic response -- 3.3.2.1 Effect of support surfaces -- 3.3.2.2 Effect of straps -- 3.3.2.3 Effect of shocks -- 3.3.2.4 Effect of vibration magnitude -- 3.3.3 Relative transmissibility -- 3.3.4 Case study: 3D transmissibility of supine subject -- 3.3.5 Effect of posture -- 3.3.6 Effects of gender, mass, and anthropometry -- 3.3.7 Case study: example field study -- 3.3.7.1 Subject preparation -- 3.3.7.2 Testing and data collection -- 3.3.8 Data analysis -- 3.3.9 General findings -- 3.3.10 Effect of gender -- 3.3.10.1 Effect of body mass -- 3.3.10.2 Effect of stature -- 3.3.10.3 Effect of vibration magnitude -- 3.3.10.4 Limitations -- 3.4 Summary -- References -- 4 Discomfort in whole-body vibration -- 4.1 Introduction -- 4.2 Methods of discomfort quantification -- 4.2.1 Dynamic discomfort-history -- 4.2.2 Subjective evaluation of discomfort -- 4.2.2.1 Analysis of reported discomfort data -- 4.2.2.2 Case study: subjective evaluation of discomfort -- 4.2.2.2.1 Data collection -- 4.2.2.2.2 Analysis of the data -- 4.2.3 Objective evaluation of discomfort -- 4.2.3.1 ISO evaluation of discomfort -- 4.2.3.1.1 Weighted RMS acceleration evaluation -- 4.2.3.1.2 Effect of vibration direction -- 4.2.3.1.3 Validity and limitations of the current standards -- 4.2.4 Approaches for evaluation of objective discomfort -- 4.2.4.1 Predictive discomfort using transfer functions -- 4.2.4.2 Dynamic discomfort and the role of human-segments motion -- 4.2.4.3 Case study: role of body segments motion -- 4.2.4.3.1 Methods and data collection -- 4.2.4.3.2 Data analysis and results -- 4.3 The role of the rotational and translational motions on dynamic discomfort -- 4.3.1 Case study: role of rotational motion in discomfort -- 4.3.1.1 Reported discomfort -- 4.3.1.2 Relative RMS angular velocity
4.4 Predictive discomfort of supine humans -- 4.4.1 Case study -- 4.4.2 Case study: predictive discomfort for supine postures -- 4.5 Predictive discomfort of nonneutral postures in seated positions -- 4.5.1 Case study: effect of nonneutral postures on discomfort -- 4.5.1.1 Study design and data collection -- 4.5.1.1.1 Data analysis and discomfort function formulation -- 4.5.1.1.2 Results -- 4.5.1.1.3 Predictive discomfort and posture results -- 4.5.2 Predictive discomfort and ISO standard -- 4.5.3 Predictive discomfort using the angular acceleration versus angular velocity -- 4.6 Chapter summary -- References -- 5 Justification and efficacy of prehospital immobilization systems -- 5.1 Introduction -- 5.2 Ongoing debate -- 5.3 Whole-body transport and immobilization -- 5.3.1 Types of studies on validity of immobilization systems -- 5.4 Immobilization of the cervical spine -- 5.4.1 Case study: immobilization of the cervical spine-dynamic study -- 5.4.1.1 Lab testing -- 5.4.1.2 Results -- 5.5 Immobilization of the lumbar spine -- 5.5.1 Case study of lumbar immobilization -- 5.5.2 Results -- 5.6 The need for standards for prehospital transport -- 5.7 Summary -- References -- Index -- Back Cover
Notes Print version record
Subject Vibration -- Physiological effect.
Ambulances -- Vibration
Hospital patients -- Transportation.
Patients -- Positioning.
Transport of sick and wounded.
Transportation of Patients
Vibration -- adverse effects
Patient Positioning
Transport of sick and wounded
Hospital patients -- Transportation
Patients -- Positioning
Vibration -- Physiological effect
Form Electronic book
ISBN 9780323901048
0323901042