Here are entered works on the control of the type and rate of cellular processes by regulation of the activity of specific genes controlling individual biochemical reactions. Works on the various mechanisms of cellular control such as structural control, biochemical control, cell differentiation, etc., are entered under Cellular control mechanisms
1
Gene regulation. : Schaum's Biology Problem 10.8: Histone Role in Transcription / Ella Ingram
Interacting DNA-encoded regulatory subsystems in the GENOME that coordinate input from activator and repressor TRANSCRIPTION FACTORS during development, cell differentiation, or in response to environmental cues. The networks function to ultimately specify expression of particular sets of GENES for specific conditions, times, or locations
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
A 37-amino acid peptide derived from the calcitonin gene. It occurs as a result of alternative processing of mRNA from the calcitonin gene. The neuropeptide is widely distributed in the brain, gut, perivascular nerves, and other tissue. The peptide produces multiple biological effects and has both circulatory and neurotransmitter modes of action. In particular, it is a potent endogenous vasodilator
Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest
Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES)
Gene Silencing -- drug effects : Synthetic nucleic acids as inhibitors of gene expression : mechanisms, applications, and therapeutics implications / edited by Levon Michael Khachigian
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process
Retrovirus-associated DNA sequences (src) originally isolated from the Rous sarcoma virus (RSV). The proto-oncogene src (c-src) codes for a protein that is a member of the tyrosine kinase family and was the first proto-oncogene identified in the human genome. The human c-src gene is located at 20q12-13 on the long arm of chromosome 20
Genes that cause the epigenotype (i.e., the interrelated developmental pathways through which the adult organism is realized) to switch to an alternate cell lineage-related pathway. Switch complexes control the expression of normal functional development as well as oncogenic transformation
DNA sequences, in cells of the T-lymphocyte lineage, that code for T-cell receptors. The TcR genes are formed by somatic rearrangement (see GENE REARRANGEMENT, T-LYMPHOCYTE and its children) of germline gene segments, and resemble Ig genes in their mechanisms of diversity generation and expression
The integration of exogenous DNA into the genome of an organism at sites where its expression can be suitably controlled. This integration occurs as a result of homologous recombination
DNA sequences, in cells of the T-lymphocyte lineage, that code for T-cell receptors. The TcR genes are formed by somatic rearrangement (see GENE REARRANGEMENT, T-LYMPHOCYTE and its children) of germline gene segments, and resemble Ig genes in their mechanisms of diversity generation and expression
Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions
Gene therapy AIDS (Disease) : Gene therapy for HIV : from inception to a possible cure / Gerhard Bauer, Joseph S. Anderson
2014
1
Gene therapy -- Australia. : Ethical aspects of research on human gene therapy : report to the NHMRC / by the Medical Research Ethics Committee of NHMRC