Limit search to available items
Book Cover
E-book
Author Overduin, J. M. (James Martin), 1965-

Title The light/dark universe : light from galaxies, dark matter and dark energy / James M. Overduin, Paul S. Wesson
Published Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008

Copies

Description 1 online resource (ix, 225 pages) : illustrations
Contents 1. The enigma of the dark night sky. 1.1. Why is the sky dark at night? 1.2. "By reason of distance". 1.3. Island Universe. 1.4. Non-uniform sources. 1.5. Tired light. 1.6. Absorption. 1.7. Fractal Universe. 1.8. Finite age. 1.9. Dark stars. 1.10. Curvature. 1.11. Ether voids. 1.12. Insufficient energy. 1.13. Light-matter interconversion. 1.14. Cosmic expansion. 1.15. Olbers' paradox today -- 2. The intensity of cosmic background light. 2.1. Bolometric intensity. 2.2. Time and redshift. 2.3. Matter, energy and expansion. 2.4. How important is expansion?. 2.5. Simple flat models. 2.6. Curved and multi-fluid models. 2.7. A bright sky at night? -- 3. The spectrum of cosmic background light. 3.1. Spectral intensity. 3.2. Luminosity density. 3.3. The delta function. 3.4. The normal distribution. 3.5. The thermal spectrum. 3.6. The spectra of galaxies. 3.7. The light of the night sky. 3.8. R.I.P. Olbers' paradox -- 4. Dark cosmology. 4.1. The four dark elements. 4.2. Baryons. 4.3. Dark matter. 4.4. Neutrinos. 4.5. Dark energy. 4.6. Cosmological concordance. 4.7. The coincidental Universe -- 5. The radio and microwave backgrounds. 5.1. The cosmological "constant". 5.2. The scalar field. 5.3. Decaying dark energy. 5.4. Energy density. 5.5. Source luminosity. 5.6. Bolometric intensity. 5.7. Spectral energy distribution. 5.8. Dark energy and the background light -- 6. The infrared and visible backgrounds. 6.1. Decaying axions. 6.2. Axion halos. 6.3. Bolometric intensity. 6.4. Axions and the background light -- 7. The ultraviolet background. 7.1. Decaying neutrinos. 7.2. Neutrino halos. 7.3. Halo luminosity. 7.4. Free-streaming neutrinos. 7.5. Extinction by gas and dust. 7.6. Neutrinos and the background light -- 8. The x-ray and gamma-ray backgrounds. 8.1. Weakly interacting massive particles. 8.2. Pair annihilation. 8.3. One-loop decay. 8.4. Tree-level decay. 8.5. Gravitinos. 8.6. WIMPs and the background light -- 9. The high-energy gamma-ray background. 9.1. Primordial black holes. 9.2. Evolution and density. 9.3. Spectral energy distribution. 9.4. Bolometric intensity. 9.5. Spectral intensity. 9.6. Higher dimensions -- 10. The universe seen darkly
Summary To the eyes of the average person and the trained scientist, the night sky is dark, even though the universe is populated by myriads of bright galaxies. Why this happens is a question commonly called Olbers' Paradox, and dates from at least 1823. How dark is the night sky is a question which preoccupies astrophysicists at the present. The answer to both questions tells us about the origin of the universe and the nature of its contents - luminous galaxies like the Milky Way, plus the dark matter between them and the mysterious dark energy which appears to be pushing everything apart. In this book, the fascinating history of Olbers' Paradox is reviewed, and the intricate physics of the light/dark universe is examined in detail. The fact that the night sky is dark (a basic astronomical observation that anybody can make) turns out to be connected with the finite age of the universe, thereby confirming some event like the Big Bang. But the space between the galaxies is not perfectly black, and data on its murkiness at various wavelengths can be used to constrain and identify its unseen constituents
Bibliography Includes bibliographical references (pages 203-216) and index
Subject Olbers' paradox.
Dark matter (Astronomy)
Dark energy (Astronomy)
Galaxies -- Spectra.
Cosmology.
cosmology.
SCIENCE -- Astronomy.
Cosmology
Dark energy (Astronomy)
Dark matter (Astronomy)
Galaxies -- Spectra
Olbers' paradox
Form Electronic book
Author Wesson, Paul S
World Scientific (Firm)
ISBN 9789812834423
9812834427