Limit search to available items
Book Cover
E-book
Author Léonard, François, 1972-

Title The physics of carbon nanotube devices / François Léonard
Published Norwich, NY : William Andrew, [2009]
©2009
Online access available from:
ScienceDirect eBooks    View Resource Record  
Safari O'Reilly books online    View Resource Record  
Knovel    View Resource Record  

Copies

Description 1 online resource (xii, 296 pages) : illustrations (some color)
Series Micro & nano technologies ; 4
Micro & nano technologies ; 4
Contents Introduction; Metallic Carbon Nanotubes for Current Transport; Physics of Nanotube/Metal Contacts; Electronic Devices; Electromechanical Devices; Field Emission; Optoelectronic Devices; Chemical and Biological Sensors; References; Index
Summary Possibly the most impactful material in the nanotechnology arena, carbon nanotubes have spurred a tremendous amount of scientific research and development. Their superior mechanical and chemical robustness makes them easily manipulable and allows for the assembly of various types of devices, including electronic, electromechanical, opto-electronic and sensing devices. In the field of nanotube devices, however, concepts that describe the properties of conventional devices do not apply. Carbon nanotube devices behave much differently from those using traditional materials, and offer entirely new functionality. This book - designed for researchers, engineers and graduate students alike - bridges the experimental and theoretical aspects of carbon nanotube devices. It emphasizes and explains the underlying physics that govern their working principles, including applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. Many of the aspects discussed here differ significantly from those learned in books or traditional materials, and are essential for the future development of carbon nanotube technology. Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles. Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology. Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles. Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology
Analysis Handbooks
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Electronic apparatus and appliances -- Materials.
Fullerenes -- Structure.
Microphysics.
Nanotubes -- Analysis.
Nanotubes -- Electric properties.
Form Electronic book
ISBN 0815515731
0815519273 (electronic bk.)
0815519680 (electronic bk.)
1282027859
9780815515739
9780815519270 (electronic bk.)
9780815519683 (electronic bk.)
9781282027855