Limit search to available items
Record 15 of 42
Previous Record Next Record
Book Cover
E-book
Author Nagashima, Yorikiyo, author.

Title Beyond the standard model of elementary particle physics / Yorikiyo Nagashima
Edition First edition
Published Weinheim, Germany : Wiley-VCH Verlag, [2014]
©2014

Copies

Description 1 online resource (xxiii, 628 pages) : illustrations, color plates
Contents 880-01 Higgs -- Neutrino -- Grand unified theories -- Supersymmetry I: basics -- Supersymmetry II: phenomenology -- Extra dimensions -- Cosmology I: big bang universe -- Cosmology II: structure formation -- Dark matter -- Dark energy -- Appendix A: Virial theorem -- Appendix B: Chandrasekhar mass -- Appendix C: Production of KK gravitons -- Appendix D: Homotopy -- Appendix E: General relativity -- Appendix F: Tensor spherical harmonic function -- Appendix G: Destiny of the cosmos -- Appendix H: Answers to some problems
880-01/(S Machine generated contents note: 1.1. Introduction -- 1.2. Higgs Interactions -- 1.2.1. Standard Model -- 1.2.2. Lagrangian After Symmetry Breaking -- 1.2.3. Decay Modes -- 1.3. Mass -- 1.3.1. Predictions from EW Data -- 1.3.2. Vacuum stability -- 1.3.3. Theoretical Upper Limit -- 1.4. Little and Big Hierarchy Problem -- 1.5. Higgs in the Supersymmetry -- 1.5.1. Two Higgs Doublets -- 1.5.2. Coupling Strengths of MSSM Higgs -- 1.5.3. Mass Spectrum of MSSM Higgs -- 1.6. Is the Higgs Elementary-- 1.6.1. Technicolor Model -- 1.6.2. Little Higgs Model -- 1.7. Production and Detection of Higgs -- 1.7.1. Higgsstrahlung e-e+ -> hZ -- 1.7.2. W Boson Fusion -- 1.7.3. Productions at the Hadron Collider -- 1.7.4. Signals at LHC -- 1.7.5. Higgs Detection Methods -- 1.7.6. Discovery of Higgs -- 1.7.7. SM Higgs-- 1.7.8. MSSM Higgs and Future Prospect -- 1.8. Summary -- 2.1. Introduction -- 2.2. Neutrino Mass -- 2.2.1. Mass Matrix -- 2.2.2. Left-Right Symmetric Model -- 2.3. Electromagnetic Interaction -- 2.4. Neutrino Mixing -- 2.5. Neutrino Oscillation -- 2.5.1. Two-Flavor Oscillation -- 2.5.2. Atmospheric Neutrino -- 2.5.3. Accelerator Experiments -- 2.6. Underground Detectors -- 2.7. Solar Neutrino -- 2.7.1. Solar Puzzle -- 2.7.2. Matter Oscillation -- 2.7.3. Reactor Experiment -- 2.8. Three-Flavor Oscillation -- 2.8.1. PMNS Matrix -- 2.8.2. Summary of Experimental Data -- 2.8.3. CP Violation and Mass Hierarchy -- 2.8.4. Future Prospects -- 2.9. Double Beta Decay -- 2.9.1. Effective Majorana Mass -- 2.9.2. Current Status -- 2.9.3. To Design an Experiment -- 2.9.4. Experimental Apparatus -- 2.10. Supernova Neutrino -- 2.10.1. Stellar Evolution -- 2.10.2. Feedback to Particle Physics -- 3.1. Introduction -- 3.2. Why GUTs-- 3.2.1. Weinberg Angle in GUTs -- 3.2.2. Quantization of the Electric Charge -- 3.2.3. Triangle Anomaly -- 3.3. S U(5) -- 3.3.1. Fermion Representation -- 3.3.2. Representation of the Gauge Particle -- 3.3.3. Symmetry Breakdown -- 3.3.4. Predictions -- 3.4. SO(10) -- 3.4.1. Left-Right Symmetric World -- 3.4.2. New Gauge Bosons Z' and W' -- 3.5. Hierarchy Problem -- 3.6. SUSY GUT -- 4.1. Introduction -- 4.1.1. Toy Model -- 4.1.2. Field Theoretical Operators -- 4.2. Two-Component Formalism -- 4.2.1. Majorana Fields -- 4.2.2. SUSY Operators -- 4.2.3. Superspace -- 4.3. Chiral Superfield -- 4.3.1. Products of Chiral Superfields -- 4.4. Vector Superfields -- 4.4.1. Field Strength -- 4.5. Action -- 4.5.1. SUSY Invariant Action -- 4.5.2. Kinetic Energy of Chiral Superfield -- 4.5.3. Superpotential -- 4.5.4. Lagrangian of the Chiral Fields -- 4.5.5. Kinetic Energy of Vector Field -- 4.6. Gauge Interaction -- 4.6.1. Global U(1) Transformation -- 4.6.2. Local U(1) Transformation -- 4.6.3. Non-Abelian Interaction -- 4.7. Summary of SUSY Lagrangian -- 4.8. Spontaneous Symmetry Breaking -- 4.8.1. D-Term Breaking -- 4.8.2. F-Term Breaking -- 5.1. Introduction -- 5.2. Minimum Supersymmetric Standard Model -- 5.2.1. Particle Spectrum -- 5.2.2. Interactions -- 5.2.3. Constraints -- 5.2.4. SUSY Breaking -- 5.2.5. Higgs Potential -- 5.3. Minimum SUGRA -- 5.3.1. Soft- SUSY Breaking -- 5.3.2. Mass Formula -- 5.3.3. [æ] Problem -- 5.4. GMSB -- 5.4.1. Messenger Particles -- 5.4.2. Mass Formula -- 5.4.3. Features of GMSB -- 5.5. AMSB and Extra Dimension -- 5.6. Summary of Mass Spectra -- 5.7. Searches for Sparticles -- 5.7.1. Production Mechanism -- 5.7.2. Sleptons -- 5.7.3. Charginos and Neutralinos -- 5.7.4. LSP -- 5.7.5. Gluino and Squarks -- 5.7.6. Stop -- 5.7.7. R-hadrons -- 5.7.8. Gravitino -- 5.8. Current Status -- 6.1. Introduction -- 6.2. KK Tower -- 6.2.1. Effective Coupling Strength in 4D -- 6.3. Chiral Fermions -- 6.3.1. Othifold S1/Z2 -- 6.3.2. Mass Generation and Localization -- 6.3.3. Hierarchy -- 6.3.4. Split Fermion Scenario -- 6.4. Gauge Field in ED -- 6.4.1. Action in 4D -- 6.4.2. Coupling Strength -- 6.4.3. Gauge-Higgs Unification -- 6.5. Gravitational Field -- 6.5.1. Decomposition of the Gravitational Fields -- 6.6. Warped Extra Dimension -- 6.6.1. Anti-de Sitter Space AdS5 -- 6.6.2. RS1 Scenario -- 6.6.3. RS2 scenario -- 6.6.4. Gravitons in the RS Model -- 6.6.5. Signals for Warped ED -- 6.7. Universal Extra Dimension (UED) -- 6.7.1. General Features -- 6.7.2. Selection Rules -- 6.7.3. Constraints -- 6.7.4. Signals for UED -- 6.8. Searches for Generic ED -- 6.8.1. Astrophysical Constraints on ADD Models -- 6.8.2. Collider Experiments on ADD Models -- 6.8.3. TeV-1 Extra Dimension Model: -- 6.9. Black hole production -- 7.1. Soliton -- 7.1.1. Kink -- 7.1.2. Vortex -- 7.1.3. Winding Number -- 7.1.4. Spacetime Where the Soliton Lives -- 7.1.5. Instanton -- 7.1.6. θ Vacuum -- 7.1.7. Electroweak Vacua -- 7.2. Strong CP Problem -- 7.2.1. Anomaly -- 7.2.2. Chiral Transformation and the Mass Term -- 7.2.3. U(1) problem -- 7.3. Why Do We Need the Axion-- 7.3.1. PQ Symmetry and the Standard Axion -- 7.3.2. Invisible Axion -- 7.4. Constraints on Invisible Axions -- 7.4.1. Coolant of the Stellar Evolution -- 7.4.2. Axion as the Dark Matter -- 7.4.3. Misalignment axion -- 7.5. Laboratory Axion Searches -- 8.1. Why Do We Study Cosmology-- 8.2. Cosmic Equation -- 8.2.1. Robertson-Walker Metric -- 8.2.2. Friedmann Equation -- 8.3. Expanding Universe -- 8.3.1. Redshift of Light -- 8.3.2. Redshift of Particles -- 8.3.3. Cosmic Parameters -- 8.4. Thermal Universe -- 8.4.1. Thermodynamics -- 8.4.2. Radiation and Matter Dominance -- 8.4.3. Time versus Temperature -- 8.4.4. Overview of Thermal History -- 8.5. Cosmic Distance, Horizon -- 8.5.1. Distance -- 8.5.2. Horizon -- 8.6. Genesis -- 8.6.1. Matter Universe -- 8.6.2. Baryogenesis -- 8.6.3. Leptogenesis -- 8.6.4. Neutrino Decoupling -- 8.6.5. Big Bang Nucleosynthesis -- 8.7. Last Scattering -- 8.7.1. Radiation-Matter Equality -- 8.7.2. Recombination -- 8.7.3. Dark Age -- 8.8. Inflation -- 8.8.1. Slow Rolling and Reheating -- 8.8.2. Horizon Problem -- 8.8.3. Flatness Problem -- 8.8.4. Monopole Problem -- 9.1. Galaxy Distribution -- 9.1.1. Introduction -- 9.1.2. Boltzmann Equation -- 9.1.3. Growth of the Fluctuation -- 9.1.4. Dark Matter -- 9.1.5. Jeans Wavelength of the Neutrino -- 9.1.6. Power Spectrum -- 9.1.7. Initial fluctuation -- 9.1.8. Effects of Neutrino Mass -- 9.1.9. Primordial Fluctuation -- 9.2. CMB Anisotropy -- 9.2.1. Overview -- 9.2.2. Sachs-Wolfe Effect -- 9.2.3. Acoustic Oscillations -- 9.2.4. Doppler Effect -- 9.2.5. Silk Damping -- 9.2.6. Outcome of CMB Measurements -- 9.2.7. Polarization -- 10.1. Cosmic Budget -- 10.2. Evidences of Dark Matter -- 10.2.1. Rotation Curves of Spiral Galaxies -- 10.2.2. Virial Mass of the Clusters -- 10.2.3. X-ray Emitting Clusters -- 10.2.4. Gravitational Lens -- 10.3. Relics of the Big Bang -- 10.3.1. Freeze-Out -- 10.3.2. Hot Dark Matter -- 10.3.3. Cold Dark Matter -- 10.3.4. Candidates for the Dark Matter -- 10.4. How to Detect-- 10.4.1. Indirect methods -- 10.4.2. Production by Accelerators -- 10.4.3. WIMPS Wind -- 10.5. Searches for DMs in the Halo -- 10.5.1. General -- 10.5.2. Bolometer -- 10.5.3. Xe Detector -- 10.5.4. Current Status -- 11.1. Dark Energy -- 11.1.1. Accelerating Universe -- 11.1.2. Cosmic Age -- 11.1.3. ACDM Model -- 11.2. Cosmological Constant -- 11.3. Quintessence model -- 11.4. Other Dark Energy Models -- 11.5. How to Investigate the Dark Energy-- E.1. Geodesic Equation -- E.2. Ricci Tensor and Scalar -- E.3. Gauge Degrees of Freedom -- E.4. Gravitational Waves
Summary "A unique and comprehensive presentation on modern particle physics which stores the background knowledge on the big open questions beyond the standard model, as the existence of the Higgs-boson, or the nature of Dark Matter and Dark Energy"--Provided by publisher
Notes Edition statement from running title area
Bibliography Includes bibliographical references and index
Notes Online resource; title from PDF title page (ebrary, viewed April 02, 2014)
Subject Nuclear astrophysics.
Particles (Nuclear physics)
Elementary Particles
particle physics.
SCIENCE -- Physics -- Quantum Theory.
Nuclear astrophysics
Particles (Nuclear physics)
Form Electronic book
ISBN 9783527665020
3527665021
9783527665051
3527665056
3527411771
9783527411771
3527665048
9783527665044
352766503X
9783527665037
9781306531894
1306531896