Limit search to available items
Book Cover
E-book
Author Jones, Alexander Thomas

Title Cooling electrons in nanoelectronic devices by on-chip demagnetisation / Alexander Thomas Jones
Published Cham, Switzerland : Springer, 2020

Copies

Description 1 online resource : illustrations
Series Springer theses
Springer theses
Contents Intro -- Supervisor's Foreword -- Abstract -- Acknowledgements -- Contents -- Acronyms -- 1 Introduction -- References -- 2 Background -- 2.1 Cooling Techniques -- 2.1.1 Dilution Refrigeration -- 2.1.2 Magnetic Cooling -- 2.2 Coulomb Blockade Thermometry -- 2.2.1 Outline -- 2.2.2 Orthodox Theory of Single Electron Tunnelling -- 2.2.3 Practical Measurements -- 2.3 On-Chip Refrigeration -- 2.3.1 Motivation and Principles -- 2.3.2 Techniques -- References -- 3 On-Chip Demagnetisation Cooling on a Cryogen-Free Dilution Refrigerator -- 3.1 Coulomb Blockade Thermometer Device
3.2 Experimental Set-Up -- 3.2.1 Mounting and Heatsinking -- 3.2.2 Electrical -- 3.3 CBT Characteristics -- 3.4 CBT Cooling -- 3.4.1 Initial Experiments -- 3.4.2 Thermal Modelling -- 3.4.3 Optimisation -- 3.5 Conclusions -- References -- 4 On-Chip Demagnetisation Cooling on a Cryogen-Filled Dilution Refrigerator -- 4.1 Experimental Set-Up -- 4.1.1 Mounting and Heatsinking -- 4.1.2 Electrical -- 4.2 CBT Measurements -- 4.2.1 Additional Techniques -- 4.2.2 Characterisation Results -- 4.3 Demagnetisation Cooling -- 4.4 Conclusions -- References
5 On-Chip Demagnetisation Cooling of a High Capacitance CBT -- 5.1 Experimental Set-Up -- 5.1.1 New CBT Fabrication -- 5.1.2 Precooling -- 5.2 CBT Characterisation -- 5.3 Demagnetisation Cooling -- 5.4 Heat Leaks -- 5.5 CBT Copper -- 5.6 Conclusions -- References -- 6 Summary and Outlook -- References
Summary This thesis demonstrates that an ultralow temperature refrigeration technique called "demagnetisation refrigeration" can be miniaturised and incorporated onto millimeter-sized chips to cool nanoelectronic circuits, devices and materials. Until recently, the lowest temperature ever reached in such systems was around 4 millikelvin. Here, a temperature of 1.2mK is reported in a nanoelectronic device. The thesis introduces the idea that on-chip demagnetization refrigeration can be used to cool a wide variety of nanostructures and devices to microkelvin temperatures. This brings the exciting possibility of discovering new physics, such as exotic electronic phases, in an unexplored regime and the potential to improve the performance of existing applications, including solid-state quantum technologies. Since the first demonstration of on-chip demagnetization refrigeration, described here, the technique has been taken up by other research groups around the world. The lowest on-chip temperature is currently 0.4mK. Work is now underway to adapt the technique to cool other materials and devices, ultimately leading to a platform to study nanoscale materials, devices and circuits at microkelvin temperatures
Notes "Doctoral Thesis accepted by Lancaster University, Lancaster, United Kingdom."
Bibliography Includes bibliographical references
Subject Adiabatic demagnetization.
Electron temperature.
Low temperature engineering.
Materials science.
Spectrum analysis, spectrochemistry, mass spectrometry.
Low temperature physics.
Technology & Engineering -- Material Science.
Science -- Solid State Physics.
Science -- Mechanics -- Dynamics -- Thermodynamics.
Low temperature engineering
Electron temperature
Adiabatic demagnetization
Low temperatures
Materials science
Solid state physics
Genre/Form Electronic books
Form Electronic book
ISBN 9783030512330
3030512339