Limit search to available items
Book Cover
Author Bıyıkoğlu, Türker.

Title Laplacian eigenvectors of graphs : Perron-Frobenius and Faber-Krahn type theorems / Türker Bıyıkoğlu, Josef Leydold, Peter F. Stadler
Published Berlin ; New York : Springer, ©2007


Description 1 online resource (viii, 115 pages) : illustrations
Series Lecture notes in mathematics, 0075-8434 ; 1915
Lecture notes in mathematics (Springer-Verlag) ; 1915.
Contents Graph Laplacians -- Eigenfunctions and Nodal Domains -- Nodal Domain Theorems for Special Graph Classes -- Computational Experiments -- Faber-Krahn Type Inequalities
Summary Eigenvectors of graph Laplacians have not, to date, been the subject of expository articles and thus they may seem a surprising topic for a book. The authors propose two motivations for this new LNM volume: (1) There are fascinating subtle differences between the properties of solutions of Schrödinger equations on manifolds on the one hand, and their discrete analogs on graphs. (2) "Geometric" properties of (cost) functions defined on the vertex sets of graphs are of practical interest for heuristic optimization algorithms. The observation that the cost functions of quite a few of the well-studied combinatorial optimization problems are eigenvectors of associated graph Laplacians has prompted the investigation of such eigenvectors. The volume investigates the structure of eigenvectors and looks at the number of their sign graphs ("nodal domains"), Perron components, graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology
Bibliography Includes bibliographical references (pages 101-114) and index
Notes Print version record
Subject Eigenvectors.
Laplacian operator.
Graph theory.
Graph theory.
Laplacian operator.
Form Electronic book
Author Leydold, Josef.
Stadler, Peter F., 1965-
ISBN 9783540735106