Limit search to available items
Book Cover
Author Sadhukhan, Jhuma, author

Title Biorefineries and chemical processes : design, integration and sustainability analysis / Jhuma Sadhukhan, Kok Siew Ng, Elias Martinez Hernandez
Published Chichester, West Sussex ; Hoboken, NJ : Wiley, 2014
Online access available from:
ProQuest Ebook Central Subscription    View Resource Record  


Description 1 online resource
Contents Biorefineries and Chemical Processes; Contents; Preface; Part I: Introduction; Part II: Tools; Part III: Process Synthesis and Design; Part IV: Biorefinery Systems; Part V: Interacting Systems of Biorefineries (available on the companion website); Case Studies (available on the companion website); Acknowledgments; About the Authors; Companion Website; Nomenclature; Part I Introduction; 1 Introduction; 1.1 Fundamentals of the Biorefinery Concept; 1.1.1 Biorefinery Principles; 1.1.2 Biorefinery Types and Development; 1.2 Biorefinery Features and Nomenclature; 1.3 Biorefinery Feedstock: Biomass
1.3.1 Chemical Nature of Biorefinery Feedstocks1.3.2 Feedstock Characterization; 1.4 Processes and Platforms; 1.5 Biorefinery Products; 1.6 Optimization of Preprocessing and Fractionation for Bio Based Manufacturing; 1.6.1 Background of Lignin; 1.7 Electrochemistry Application in Biorefineries; 1.8 Introduction to Energy and Water Systems; 1.9 Evaluating Biorefinery Performances; 1.9.1 Performance Indicators; 1.9.2 Life Cycle Analysis; 1.10 Chapters; 1.11 Summary; References; Part II Tools; 2 Economic Analysis; 2.1 Introduction; 2.2 General Economic Concepts and Terminology
2.2.1 Capital Cost and Battery Limits2.2.2 Cost Index; 2.2.3 Economies of Scale; 2.2.4 Operating Cost; 2.2.5 Cash Flows; 2.2.6 Time Value of Money; 2.2.7 Discounted Cash Flow Analysis and Net Present Value; 2.2.8 Profitability Analysis; 2.2.9 Learning Effect; 2.3 Methodology; 2.3.1 Capital Cost Estimation; 2.3.2 Profitability Analysis; 2.4 Cost Estimation and Correlation; 2.4.1 Capital Cost; 2.4.2 Operating Cost; 2.5 Summary; 2.6 Exercises; References; 3 Heat Integration and Utility System Design; 3.1 Introduction; 3.2 Process Integration
3.3 Analysis of Heat Exchanger Network Using Pinch Technology3.3.1 Data Extraction; 3.3.2 Construction of Temperature-Enthalpy Profiles; 3.3.3 Application of the Graphical Approach for Energy Recovery; 3.4 Utility System; 3.4.1 Components in Utility System; 3.5 Conceptual Design of Heat Recovery System for Cogeneration; 3.5.1 Conventional Approach; 3.5.2 Heuristic Based Approach; 3.6 Summary; References; 4 Life Cycle Assessment; 4.1 Life Cycle Thinking; 4.2 Policy Context; 4.3 Life Cycle Assessment (LCA); 4.4 LCA: Goal and Scope Definition; 4.5 LCA: Inventory Analysis
4.6 LCA: Impact Assessment4.6.1 Global Warming Potential; 4.6.2 Land Use; 4.6.3 Resource Use; 4.6.4 Ozone Layer Depletion; 4.6.5 Acidification Potential; 4.6.6 Photochemical Oxidant Creation Potential; 4.6.7 Aquatic Ecotoxicity; 4.6.8 Eutrophication Potential; 4.6.9 Biodiversity; 4.7 LCA: Interpretation; 4.7.1 Stand-Alone LCA; 4.7.2 Accounting LCA; 4.7.3 Change Oriented LCA; 4.7.4 Allocation Method; 4.8 LCIA Methods; 4.9 Future R & D Needs; References; 5 Data Uncertainty and Multicriteria Analyses; 5.1 Data Uncertainty Analysis; 5.1.1 Dominance Analysis; 5.1.2 Contribution Analysis
Summary "This book is for educators, postgraduate and final year undergraduate students in chemical engineering, environmental and biochemical engineering and applied science subjects, as well as researchers and practitioners in industry"-- Provided by publisher
Notes Includes index
Bibliography Includes bibliographical references and index
Notes Print version record and CIP data provided by publisher
Subject Biomass chemicals industry.
Biomass chemicals -- Technological innovations.
Biomass energy industries -- Environmental aspects.
Biomass -- Refining.
Form Electronic book
Author Hernandez, Elias Martinez.
Ng, Kok Siew, author
LC no. 2013050485
ISBN 1118698126
1118698134 (Adobe PDF)
1118698169 (ePub)
1119990866 (hardback)
1322060576 (MyiLibrary)
9781118698136 (Adobe PDF)
9781118698167 (ePub)
9781119990864 (hardback)
9781322060576 (MyiLibrary)