Limit search to available items
Record 5 of 34
Previous Record Next Record
Book Cover
E-book

Title Biofuels : from microbes to molecules / edited by Xuefeng Lu ; contributors Norbert Acs [and thirteen others]
Published Norfolk, England : Caister Academic Press, 2014
©2014

Copies

Description 1 online resource (259 pages) : illustrations
Contents Current Books of Interest; Contributors; Preface; 1: Metabolic Engineering: Key for Improving Biological Hydrogen Production; 1.1 Introduction; 1.2 Metabolic engineering of bacterial systems for hydrogen production by dark fermentation; 1.3 Metabolic engineering of green algae, cyanobacteria, and bacteria for improving hydrogen production; 1.4 Future directions; 2: Biogas-producing Microbes and Biomolecules; 2.1 Introduction; 2.2 Biogas microbiology; 2.3 Biomethane; 2.4 Molecular methods for the study and control of biogas production; 2.5 Biogas from unconventional substrates
2.6 Future trends: algae2.7 Conclusions; 3: Engineering Recombinant Organisms for Next-generation Ethanol Production; 3.1 Introduction; 3.2 Overview of all microbial technologies for first- (1G) and second-generation (2G) ethanol production; 3.3 Xylose fermentation by Saccharomyces cerevisiae; 3.4 Hardening of S. cerevisiae against inhibitors formed during lignocellulose pretreatment; 3.5 CBP application to soluble and insoluble (raw, uncooked) starch fermentation; 3.6 Conversion of cellulose to ethanol by S. cerevisiae in a CBP configuration
3.7 Mining microbial diversity for novel enzymes for CBP application to starch and lignocellulose, including genomic and metagenomic and/or transcriptomic libraries as sources of novel enzymes/activities3.8 Process configurations for integration of 1G and 2G processes; 3.9 Discussion and conclusions; 4: Production of Biobutanol, from ABE to Syngas Fermentation; 4.1 Butanol -- commodity chemical and advanced biofuel; 4.2 Classic acetone-butanol-ethanol (ABE) fermentation with solventogenic clostridia; 4.3 Engineering of non-natural butanol producers and synthetic pathways
4.4 Future trends -- butanol production from greenhouse gases CO2 and/or CO5: Higher Chain Alcohols from Non-fermentative Pathways; 5.1 Introduction; 5.2 Steps to production; 5.3 Fermentative alcohol production; 5.4 2-Keto acid-based alcohols; 5.5 Conclusion; 6: Isoprene-derived Biofuels from Engineered Microbes; 6.1 Classes of isoprenoid compounds; 6.2 Metabolic pathway and host engineering to optimize isoprenoid-precursors biosynthetic pathways; 6.3 Conversions of isoprenoid precursors to fuel compounds; 6.4 Future trends in isoprene-derived biofuels
7: Engineering Microbial Fatty Acid Biosynthetic Pathways to Make Advanced Biofuels7.1 Introduction; 7.2 Current status of biodiesel production; 7.3 Motivation for engineering fatty acid metabolism; 7.4 Brief review of fatty acid metabolism; 7.5 Regulation of fatty acid synthesis and degradation; 7.6 Genetic engineering of bacteria to improve free fatty acid production; 7.7 Genetic engineering to improve fatty alcohol production; 7.8 Genetic engineering to improve fatty acid methyl/ethyl ester production; 7.9 Genetic engineering to improve fatty alkane/alkene production
Summary The increasing worldwide demand for energy, combined with diminishing fossil fuel reserves and concerns about climate change, have stimulated intense research into the development of renewable energy sources, in particular, microbial biofuels. For a biofuel to be commercially viable, the production processes, yield, and titer have to be optimized, which can be achieved through the use of microbial cell factories. Using multidisciplinary research approaches, and through the application of diverse biotechnologies (such as enzyme engineering, metabolic engineering, systems biology, and synthetic
Notes Includes index
Bibliography Includes bibliographical references and index
Notes Online resource; title from PDF title page (ebrary, viewed June 27, 2014)
Subject Biomass conversion.
Biomass conversion
Form Electronic book
Author Lu, Xuefeng, editor
Acs, Norbert, contributor
LC no. 2014471077
ISBN 9781908230638
1908230630
1908230452
9781908230454