Limit search to available items
Book Cover
E-book
Author Kitchin, C. R. (Christopher R.), author.

Title Astrophysical techniques / C.R. Kitchin
Edition Seventh edition
Published Boca Raton, FL : CRC Press, 2020

Copies

Description 1 online resource (xv, 449 pages) : illustrations
Contents Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Author -- Chapter 1: Detectors -- 1.1 Optical Detection -- 1.1.1 Introduction -- 1.1.2 Detector Types -- 1.1.3 The Eye -- 1.1.4 Semiconductors -- 1.1.4.1 The Photoelectric Effect -- 1.1.5 A Detector Index -- 1.1.6 Detector Parameters -- 1.1.7 Cryostats -- 1.1.8 Charge-Coupled Devices (CCDs) -- 1.1.8.1 CCDs -- 1.1.8.2 Charge Injection Devices (CIDs) -- 1.1.8.3 CCDs -- The Future -- 1.1.9 Avalanche Photodiodes (APDs) -- 1.1.9.1 Photodiodes -- 1.1.9.2 Avalanche Photodiode
1.1.9.3 Single Photon Avalanche Photodiodes -- 1.1.10 Photography -- 1.1.11 Photomultipliers (PMTs) -- 1.1.12 Superconducting Tunnel Junction (STJ) Detectors -- 1.1.13 Microwave Kinetic Inductance Detectors (MKIDs) or Kinetic Inductance Detectors (KIDs) -- 1.1.14 Future Possibilities -- 1.1.15 Infrared Detectors -- 1.1.15.1 Photoconductive Cells -- 1.1.15.2 Bolometers -- 1.1.15.3 Other Types of Detectors -- 1.1.15.4 Astronomical Applications -- 1.1.16 Ultraviolet Detectors -- 1.1.16.1 Applications -- 1.1.17 Noise, Uncertainties, Errors, Precision and Accuracy -- 1.1.17.1 Intrinsic Noise
1.1.17.2 Signal Noise -- 1.1.17.3 Digitisation -- 1.1.17.4 Errors and Uncertainties in Data Reduction, Analysis, and Presentation -- 1.1.18 Telescopes -- 1.1.18.1 Telescopes from the Beginning -- 1.1.18.2 Optical Theory -- 1.1.19 Telescope Designs -- 1.1.19.1 Background -- 1.1.19.2 Designs -- 1.1.20 Telescopes in Space -- 1.1.21 Mountings -- 1.1.22 Real-Time Atmospheric Compensation -- 1.1.22.1 Sampling System -- 1.1.22.2 Wavefront Sensing -- 1.1.22.3 Wavefront Correction -- 1.1.23 Future Developments -- 1.1.24 Observing Domes, Enclosures and Sites -- 1.2 Radio and Microwave Detection
1.2.1 Introduction -- 1.2.2 Detectors and Receivers -- 1.2.2.1 Detectors -- 1.2.2.2 Receivers -- 1.2.3 Radio Telescopes -- 1.2.3.1 Construction -- 1.2.3.2 Future -- 1.3 X-Ray and Gamma-Ray Detection -- 1.3.1 Introduction -- 1.3.2 Detectors -- 1.3.2.1 Geiger Counters -- 1.3.2.2 Proportional Counters -- 1.3.2.3 Scintillation Detectors -- 1.3.2.4 Pair Production Detectors -- 1.3.2.5 Gas Scintillation Proportional Counters -- 1.3.2.6 Compton Interaction Detectors -- 1.3.2.7 Solid-State Detectors -- 1.3.2.8 Microchannel Plates -- 1.3.2.9 Cerenkov Detectors -- 1.3.2.10 Future Possibilities
1.3.3 Shielding -- 1.3.4 Imaging -- 1.3.4.1 Collimation -- 1.3.4.2 Coincidence Detectors -- 1.3.4.3 Occultation -- 1.3.4.4 Reflecting Telescopes -- 1.3.5 Resolution and Image Identification -- 1.3.6 Spectroscopy -- 1.3.6.1 Grating Spectrometers -- 1.3.6.2 Bragg Spectrometers -- 1.3.7 Polarimetry -- 1.3.8 Observing Platforms -- 1.4 Cosmic Ray Detectors -- 1.4.1 Background -- 1.4.2 Detectors -- 1.4.2.1 Real-Time Methods -- 1.4.2.2 Residual Track Detectors -- 1.4.2.3 Indirect Detectors -- 1.4.3 Arrays -- 1.4.4 Correction Factors -- 1.4.4.1 Atmospheric Effects -- 1.4.4.2 Solar Effects
Summary Long used in undergraduate and introductory graduate courses, Astrophysical Techniques, Seventh Edition provides an accessible yet comprehensive account of the innovate instruments, detectors, and techniques employed in astronomy and astrophysics. Emphasizing the underlying unity of all astronomical observations, this popular textbook provides a coherent state-of-the-art account of the instruments and techniques used in current astronomy and astrophysics. Fully updated throughout, this seventh edition builds upon the sixth edition, covering improved techniques and cutting-edge methods in the field, as well as other exciting new developments in gravitational waves, dark matter and energy, the use of photonics, and astronomy education and outreach, in addition to further detailed discussions on the latest scientific instruments and individual detectors. The book is written in a very accessible manner, and most of the mathematics is accessible to those who have attended a mathematics course in their final years at school. Nevertheless, the treatment of the topics in general is at a sufficiently high level to be of use to those professionals seeking technical information in areas of astronomy with which they might not be completely familiar. Key Features: Details the instrumentation and theory of astronomical observations, including radio waves, gamma rays, cosmic rays, neutrinos, gravitational waves and dark matter and energy and more Presents the background theory and operating practice of state-of-the-art detectors and instruments Fully updated to contain the latest technology and research developments
Bibliography Includes bibliographical references and index
Notes 1.4.4.3 Terrestrial Magnetic Field
Chris is currently Professor Emeritus at the University of Hertfordshire and a freelance writer of astrophysics text books. From 1987 to 2001 he was Director of the University's Observatory at Bayfordbury and from 1996 to 2001 also Head of the Division of Physics and Astronomy. He took early retirement in 2001 in order to concentrate on his writing interests. Chris has written sixteen books as sole author and contributed to another dozen or so, as well as writing hundreds of articles covering interests ranging from popular to specialist research
Online resource; title from digital title page (viewed on August 05, 2020)
Subject Astrophysics -- Technique
Astronomy -- Technique
Astronomical instruments.
Imaging systems in astronomy.
astronomical instruments.
SCIENCE -- Astrophysics & Space Science.
SCIENCE -- Physics.
Astronomical instruments
Astronomy -- Technique
Astrophysics -- Technique
Imaging systems in astronomy
Form Electronic book
ISBN 9780429956980
0429956983
9780429491139
0429491131
9780429956973
0429956975
9780429956997
0429956991