Analytical chemistry -- Quantitative -- Textbooks : Quantitative chemical analysis / Daniel C. Harris, Michelson Laboratory, China Lake, California ; Charles A. Lucy, University of Alberta, Edmonton, Alberta
Analytical chemistry -- Study and teaching : Ethanol and education : alcohol as a theme for teaching chemistry / Roger Barth, editor, West Chester University, West Chester, Pennsylvania, Mark A. Benvenuto, editor, University of Detroit Mercy, Detroit, Michigan ; sponsored by the ACS Division of Chemical Education
2015
1
Analytical chemistry -- Tables : CRC Handbook of Basic Tables for Chemical Analysis Data-Driven Methods and Interpretation
Microdevices that combine microfluidics technology with electrical and/or mechanical functions for analyzing very small fluid volumes. They consist of microchannels etched into substrates made of silicon, glass, or polymer using processes similar to photolithography. The test fluids in the channels can then interact with different elements such as electrodes, photodetectors, chemical sensors, pumps, and valves
Microdevices that combine microfluidics technology with electrical and/or mechanical functions for analyzing very small fluid volumes. They consist of microchannels etched into substrates made of silicon, glass, or polymer using processes similar to photolithography. The test fluids in the channels can then interact with different elements such as electrodes, photodetectors, chemical sensors, pumps, and valves
Microdevices that combine microfluidics technology with electrical and/or mechanical functions for analyzing very small fluid volumes. They consist of microchannels etched into substrates made of silicon, glass, or polymer using processes similar to photolithography. The test fluids in the channels can then interact with different elements such as electrodes, photodetectors, chemical sensors, pumps, and valves
Microdevices that combine microfluidics technology with electrical and/or mechanical functions for analyzing very small fluid volumes. They consist of microchannels etched into substrates made of silicon, glass, or polymer using processes similar to photolithography. The test fluids in the channels can then interact with different elements such as electrodes, photodetectors, chemical sensors, pumps, and valves