Limit search to available items
Book Cover
Book

Title Inorganic Nanoprobes for Biological Sensing and Imaging / Hedi Mattossi, Jinwoo Cheon, editors
Published Boston, Mass. : Artech House, 2008

Copies

Location Call no. Vol. Availability
 W'PONDS  620.5 Mat/Inf  AVAILABLE
Description ix, 302 pages, 20 unnumbered pages of plates : illustrations (some color) ; 26 cm
Series Engineering in medicine & biology
Artech House engineering in medicine & biology series.
Contents Machine derived contents note: Colloidal Quantum Dots: Synthesis, Photophysical Properties, and -- Biofunctionalization Strategies 1 -- 1.1 Introduction 1 -- 1.2 Chemistry and Physics of Semiconductor Quantum Dots 2 -- 1.2.1 Basic Physical Properties of Semiconductor Quantum Dots 2 -- 1.2.2 Synthesis, Characterization, and Capping Strategies 4 -- 1.3 Strategies for Surface-Functionalization and Conjugation -- to Biomolecules 13 -- 1.3.1 Water-Solubilization Strategies 13 -- 1.3.2 Methods for Conjugating QDs with Biomolecular Receptors 18 -- 1.4 Concluding Remarks and Future Outlook 19 -- Acknowledgments 20 -- References 21 -- Colloidal Chemical Synthesis of Organic-Dispersible Uniform Magnetic -- Nanoparticles 27 -- 2.1 Magnetism of Nanoparticles 27 -- 2.2 Transition Metal Nanoparticles 30 -- 2.2.1 Cobalt Nanoparticles 30 -- 2.2.2 Iron and Nickel Nanoparticles 32 -- 2.3 Metal Alloy Nanoparticles 33 -- 2.3.1 FePt Nanoparticles 33 -- 2.3.2 Other Metal Alloy Nanoparticles 34 -- 2.4 Metal Oxide Nanoparticles 35 -- 2.4.1 Monometallic Oxide Nanoparticles 35 -- 2.4.2 Bimetallic Ferrite Nanoparticles 38 -- 2.5 Representative Synthetic Procedures for Magnetic Nanoparticles 39 -- 2.5.1 Iron Nanoparticles 39 -- 2.5.2 Iron Oxide Nanoparticles 40 -- References 41 -- Peptide-Functionalized Quantum Dots for Live Diagnostic Imaging -- and Therapeutic Applications 45 -- 3.1 Introduction 45 -- 3.2 Phytochelatin Peptides: The All-in-One Solubilization/ -- Functionalization Approach 47 -- 3.3 Colloidal and Photophysical Properties of Peptide-Coated Qdots 50 -- 3.4 Live Cell Dynamic Imaging 52 -- 3.4.1 Single-Particle Tracking of Cell-Surface Membrane Receptors 52 -- 3.4.2 Peptide-Mediated Intracellular Delivery and Targeting of Qdots 54 -- 3.5 Live Animal Imaging 55 -- 3.5.1 Near-Infrared Deep-Tissue Dual-Modality Imaging 56 -- 3.5.2 In Vivo Targeting of Tumor Vasculature 57 -- 3.6 Beyond Diagnostic Imaging: Sensing and Therapeutic Applications 59 -- 3.6.1 Cleavable Peptides for Proteases Activity 59 -- 3.6.2 Photodynamic Therapy 61 -- 3.7 Conclusion and Perspectives 63 -- Acknowledgments 64 -- References 64 -- Resonance Energy Transfer-Based Sensing Using Quantum Dot Bioconjugates 71 -- 4.1 Introduction and Background 71 -- 4.2 Unique Attributes of Quantum Dots As FRET Donors 73 -- 4.2.1 Improving the Spectral Overlap by Tuning QD Emission 73 -- 4.2.2 Significant Reduction of Direct Excitation of the Acceptor 74 -- 4.2.3 Increase FRET Efficiency by Arraying Multiple Acceptors -- around a Single QD 74 -- 4.2.4 Achieving Multiplex FRET Configurations with One -- Excitation Source 76 -- 4.2.5 Multiphoton FRET Configurations 77 -- 4.3 FRET-Based Biosensing with Quantum Dots 79 -- 4.3.1 Competitive Sensing Using QD-Protein Conjugates 79 -- 4.3.2 Sensing Enzymatic Activity Using QD-Peptide and -- QD-Oligonucleotide Substrates 82 -- 4.3.3 Detection of Hybridization Using QD-Nucleic Acid Conjugates 85 -- 4.3.4 pH and Ion Sensing 88 -- 4.4 Quantum Dots As Sensitizers for Photodynamic Therapy 91 -- 4.5 Special Sensing Configurations 93 -- 4.6 Conclusions and Outlook 96 -- Acknowledgments 97 -- References 97 -- Use of Luminescent Quantum Dots to Image and Initiate Biological -- Functions 101 -- 5.1 Introduction 101 -- 5.2 Multivalency Allows Multifunctionality 103 -- 5.3 Stimuli-Responsive Polymers and Qds As Tools for Imaging 109 -- 5.4 Conclusions 110 -- Acknowledgments 111 -- References 111 -- Single Particle Investigation of Biological Processes Using -- QD-Bioconjugates 115 -- 6.1 Introduction 115 -- 6.2 Physical Properties of Single QDs 116 -- 6.3 In Vitro Detection of Biomolecular Interactions Using Single QD -- Fluorescence 116 -- 6.3.1 Detection of Biomolecules Using Multicolor Colocalization -- of QD Probes 117 -- 6.3.2 Colocalization Studies Using Streptavidin-Coupled -- QD-Dye Pairs 119 -- 6.3.3 Fluorescence Energy Transfer from Single QD to Organic -- Fluorophores 119 -- 6.4 In Vitro and In Vivo Tracking of Protein Using Single QDs 124 -- 6.4.1 In Vitro Detection of Kinesin and Myosin Motor Movement 124 -- 6.4.2 Tracking of Protein Receptors in Live Cells 126 -- 6.5 Conclusion 129 -- Acknowledgments 129 -- References 130 -- Assessment of the Issues Related to the Toxicity of Quantum Dots 1 33 -- 7.1 Introduction 133 -- 7.2 General Considerations 134 -- 7.2.1 Routes of Exposure 134 -- 7.2.2 Mechanisms of Cellular Internalization of QDs 135 -- 7.2.3 Detection of QD-Induced Cytotoxicity 136 -- 7.3 Mechanisms of Quantum Dots Cytotoxicity 138 -- 7.3.1 Release of Toxic Metal Ions 138 -- 7.3.2 Effects of Capping Materials on Cytotoxicity 140 -- 7.3.3 Effects of QD Size on Cytotoxicity 141 -- 7.3.4 Effects of Reactive Oxygen Species on Cytotoxicity 142 -- 7.3.5 Effects of QDs on Genomic DNA 147 -- 7.4 Bioaccumulation and Clearance of QDs 150 -- 7.5 Outlook 153 -- Acknowledgments 154 -- References 154 -- Chemical and Biological Sensing Based on Gold Nanoparticles 161 -- 8.1 Introduction 161 -- 8.2 Synthesis of Gold Nanoparticles 162 -- 8.3 Physical Properties of Gold Nanoparticles 164 -- 8.4 Colorimetric Sensing 165 -- 8.4.1 Colorimetric Detection of Metal Ions and Anions 166 -- 8.4.2 Colorimetric Detection of Biomaterials 167 -- 8.5 Fluorescence Sensing 170 -- 8.6 Electrical and Electrochemical Sensing 172 -- 8.7 Surface Enhanced Raman Scattering-Based Sensing 179 -- 8.8 Gold Nanoparticle-Amplified SPR Sensing 180 -- 8.9 Quartz Crystal Microbalance-Based Sensing 181 -- 8.10 Gold Nanoparticle-Based Bio-Barcode Assay 182 -- 8.11 Concluding Remarks 183 -- Acknowledgments 185 -- References 185 -- Plasmon-Resonant Gold Nanorods: Photophysical Properties Applied -- Toward Biological Imaging and Therapy 197 -- 9.1 Introduction 197 -- 9.2 Synthesis 198 -- 9.3 Optical Properties 200 -- 9.3.1 Absorption 200 -- 9.3.2 Plasmon-Resonant Scattering 202 -- 9.3.3 Linear Photoluminescence 202 -- 9.3.4 Nonlinear Optical Properties 203 -- 9.3.5 Other Optical Properties 205 -- 9.4 Surface Chemistry and Biocompatibility 206 -- 9.4.1 Bioconjugation Methods 206 -- 9.4.2 Cytotoxicity and Nonspecific Cell Uptake 208 -- 9.5 Biological Applications of Gold Nanorods 209 -- 9.5.1 Contrast Agents for Imaging 209 -- 9.5.2 Photothermal Therapy 213 -- 9.5.3 Ex Vivo Bioanalytical Applications 215 -- 9.6 Outlook 217 -- References 218 -- Magnetic Nanoparticles in Biomedical Applications 235 -- 10.1 Introduction 235 -- 10.2 Nanoscale Magnetic Properties 235 -- 10.3 Magnetic Resonance Imaging (MRI) Contrast Agent 237 -- 10.4 Magnetic Separation 241 -- 10.5 Magnetic Drug Delivery 245 -- 10.6 Conclusions 247 -- References 247 -- Magnetic Nanoparticles-Assisted Cellular MR Imaging and Their -- Biomedical Applications 251 -- 11.1 Introduction 251 -- 11.2 Characterization of MRI Contrast Agents or Magnetic Nanoparticles -- Used in Cell Labeling for CMRI 252 -- 11.2.1 Paramagnetic Agents 252 -- 11.2.2 Superparamagnetic Agents 253 -- 255 -- 11.3 Methods for Labeling Cells with Magnetic Nanoparticles for CMRI 256 -- 11.3.1 Endocytosis of Contrast Agents 256 -- 11.3.2 Modified Nanoparticles for Cell Labeling 257 -- 11.3.3 Transfection Agent Mediated Cell Labeling 260 -- 11.3.4 Other Methods of Cell Labeling 260 -- 11.4 Methods to Monitor the Functional Status of Labeled Cells or -- Toxicity Following Labeling 261 -- 11.4.1 Determination of Cell Viability 262 -- 11.4.2 Determination of Cell Function 263 -- 11.4.3 Determination of Cell Differentiation Capacity 263 -- 11.5 MRI Techniques to Detect Cells Labeled with Superparamagnetic -- Iron Oxides 263 -- 11.6 Animal Studies That Have Utilized CMRI 265 -- 11.6.1 Stem Cell Tracking 265 -- 11.6.2 Intracranial Tumor Studies 265 -- 11.6.3 Tumor Angiogenesis 266 -- 11.6.4 Stroke and Trauma Models 268 -- 11.6.5 Myocardial Infarction and Vascular Models 269 -- 11.6.6 Models of Multiple Sclerosis 272 -- 11.7 Translation to the Clinic 273 -- 11.7.1 Human Studies 273 -- 11.7.2 Regulatory Issues 274 -- References 276
Summary "This groundbreaking resource offers an up-to-date account of the pioneering activities pushing new boundaries in the emerging area of inorganic nanoprobes and their use in biology and medicine. Written and edited by leading experts in the field, this unique book places particular emphasis on nanoprobes made of luminescent semiconductor nanocrystals, quantum dots (ODs), gold nanoparticles (AuNPs), and magnetic nanoparticles (MNPs)." --Book Jacket
Bibliography Includes bibliograhical references and index
Subject Biosensors.
Nanotechnology.
Nanoparticles -- diagnostic use
Biosensing Techniques -- methods.
Diagnostic Imaging.
Nanomedicine -- methods.
Biosensing Techniques.
Diagnostic Imaging.
Nanomedicine.
Nanoparticles.
Author Cheon, Jinwoo.
Mattoussi, Hedi.
LC no. 2009275720
ISBN 1596931965
9781596931961