Limit search to available items
Book Cover
Book
Author Raabe, Dierk.

Title Continuum scale simulation of engineering materials : fundamentals, microstructures, process applications / edited by Dierk Raabe ... [and others]
Published Weinheim : Wiley-VCH ; Chichester : John Wiley, [2004]
©2004

Copies

Location Call no. Vol. Availability
 W'PONDS  620.110113 Raa/Css  AVAILABLE
Description xxx, 855 pages : illustrations ; 25 cm
Contents Machine derived contents note: Preface. -- List of Contributors. -- I Fundamentals and Basic Methods. -- 1 Computer Simulation of Diffusion Controlled Phase Transformations -- (A. Schneider and G. Inden). -- 1.1 Introduction. -- 1.2 Numerical Treatment of Diffusion Controlled Transformations. -- 1.3 Typical Applications. -- 1.4 Outlook. -- References. -- 2 Introduction to the Phase-Field Method of Microstructure Evolution -- (L.-Q. Chen). -- 2.1 Introduction. -- 2.2 Origin of the Model. -- 2.3 Theoretical Fundamentals of the Method. -- 2.4 Advantages and Disadvantages of the Method. -- 2.5 Typical Fields of Applications and Examples. -- 2.6 Summary and Opportunities. -- References. -- 3 Cellular, Lattice Gas, and Boltzmann Automata -- (D. Raabe). -- 3.1 Cellular Automata. -- 3.2 Cellular Automata for Fluid Dynamics. -- 3.3 Conclusions and Outlook. -- References. -- 4 The Monte Carlo Method -- (A. D. Rollett and P. Manohar). -- 4.1 Introduction. -- 4.2 History of the Monte Carlo Method. -- 4.3 Description of the Monte Carlo Method for Grain Growth & Recrystallization. -- 4.4 Nucleation in Recrystallization. -- 4.5 Initialization of MC Simulations. -- 4.6 Verification of the Monte Carlo Model. -- 4.7 Scaling of Simulated Grain Size to Physical Grain Size. -- 4.8 Recrystallization Kinetics in the Monte Carlo model. -- 4.9 Results of Simulation of Recrystallization by Monte Carlo Method. -- 4.10 Summary. -- References. -- 5 Crystal Plasticity -- (P. R. Dawson). -- 5.1 Introduction. -- 5.2 Theoretical Background. -- 5.3 Macroscopic Criteria for Anisotropic Strength. -- 5.3.1 Generalities. -- 5.4 Numerical Implementations. -- 5.5 Applications. -- 5.6 Summary. -- References. -- 6 Yield Surface Plasticity and Anisotropy -- (F. Barlat, O. Cazacu, M. ˙ Zyczkowski, D. Banabic, and J. W. Yoon). -- 6.1 Introduction. -- 6.2 Classical Plasticity Theory. -- 6.3 Material Structure and Plastic Anisotropy. -- 6.4 Yield Functions for Metals and Alloys. -- 6.5 Application to Sheet Forming and Formability. -- 6.6 Conclusions. -- References. -- 7 Artificial Neural Networks -- (E. Broese and H.-U. Löffler). -- 7.1 Introduction. -- 7.2 Basic Terms. -- 7.3 Fields of Application. -- 7.4 Implementation. -- 7.5 Types of Artificial Neural Networks. -- 7.6 Kinds of Learning. -- 7.7 Application Details. -- 7.8 Future Prospects. -- References. -- 8 Multiscale Discrete Dislocation Dynamics Plasticity -- (H. M. Zbib, M. Hiratani, and M. Shehadeh). -- 8.1 Introduction. -- 8.2 Theoretical Fundamentals of the Method. -- 8.3 Integration of DD and Continuum Plasticity. -- 8.4 Typical Fields of Applications and Examples. -- 8.5 Summary and Concluding Remarks. -- References. -- 9 Physically Based Models for Industrial Materials: What For? -- (Y. Brechet). -- 9.1 Introduction. -- 9.2 Recent Trends in Modelling Materials Behavior. -- 9.3 Some Examples of Physically Based Models for Industrial Materials. -- 9.4 Perspectives. -- References. -- II Application to Engineering Microstructures. -- 10 Modeling of Dendritic Grain Formation During Solidification at the Level of Macro- and Microstructures -- (M. Rappaz, A. Jacot, and Ch.-A. Gandin). -- 10.1 Introduction. -- 10.2 Pseudo-Front Tracking Model. -- 10.3 Coupling with Thermodynamic Databases. -- 10.4 Cellular Automaton -Finite Element Model. -- 10.5 Results and Discussion. -- 10.6 Conclusion. -- References. -- 11 Phase-Field Method Applied to Strain-dominated Microstructure Evolution during Solid-State Phase Transformations -- (L.-Q. Chen and S. Y. Hu). -- 11.1 Introduction. -- 11.2 Phenomenological Description of Solid State Phase Transformations. -- 11.3 Phase-Field Model of Solid State Phase Transformations. -- 11.4 Elastic Energy of a Microstructure. -- 11.5 Bulk Microstructures with Periodic Boundary Conditions. -- 11.6 A Single Crystal Film with Surface and Substrate Constraint. -- 11.7 Elastic Coupling of Structural Defects and Phase Transformations. -- 11.8 Phase-Field Model Applied to Solid State Phase Transformations. -- 11.9 Isostructura lPhase Separation. -- 11.10 Precipitation of Cubic Intermetallic Precipitates in a Cubic Matrix. -- 11.11 Structural Transformations Resulting in a Point Group Symmetry Reduction. -- 11.12 Ferroelectric Phase Transformations. -- 11.13 Phase Transformation in a Reduced Dimensions: Thin Films and Surfaces. -- 11.14 Summary. -- References. -- 12 Irregular Cellular Automata Modeling of Grain Growth -- (K. Janssens). -- 12.1 Introduction. -- 12.2 Irregular Cellular Automata. -- 12.3 Irregular Shapeless Cellular Automata for Grain Growth. -- 12.4 A Qualitative Example: Static Annealing of a Cold Rolled Steel. -- 12.5 Conclusion. -- References. -- 13 Topological Relationships in 2D Trivalent Mosaics and Their Application to Normal Grain Growth -- (R. Brandt, K. Lücke, G. Abbruzzese, and J. Svoboda). -- 13.1 Introduction. -- 13.2 Individual Grains and their Distributions (One-Grain Model). -- 13.3 Topological Relationships of Trivalent Mosaics. -- 13.4 Cases of Randomness. -- 13.5 Curvature Driven GG. -- 13.6 Summarizing Remarks. -- References. -- 14 Motion of Multiple Interfaces: Grain Growth and Coarsening -- (B. Nestler). -- 14.1 Introduction. -- 14.2 The Diffuse Interface Model. -- 14.3 Free Energies. -- 14.4 Numerical Simulations. -- 14.5 Outlook. -- References. -- 15 Deformation and Recrystallization of Particle-containing Aluminum Alloys -- (B. Radhakrishnan and G. Sarma). -- 15.1 Background. -- 15.2 Computational Approach. -- 15.3 Simulations. -- 15.4 Results and Discussion. -- 15.5 Summary. -- References. -- 16 Mesoscale Simulation of Grain Growth -- (D. Kinderlehrer, J. Lee, I. Livshits, and S. Ta'asan). -- 16.1 Introduction. -- 16.2 Discretization. -- 16.3 Numerical Implementation. -- 16.4 Numerical Results. -- 16.5 Conclusion. -- References. -- 17 Dislocation Dynamics Simulations of Particle Strengthening -- (V. Mohles). -- 17.1 Introduction. -- 17.2 Simulation Method. -- 17.3 Particle Arrangement. -- 17.4 Strengthening Mechanisms. -- 17.5 Summary and Outlook. -- References. -- 18 Discrete Dislocation Dynamics Simulation of Thin Film Plasticity -- (B. von Blanckenhagen and P. Gumbsch) 397 -- 18.1 Thin Film Plasticity. -- 18.2 Simulation of Dislocations in Thin Films. -- 18.2.1 Boundary Conditions. -- 18.3 Thin Film Deformation, Models and Simulation. -- 18.3.1 Mobility Controlled Deformation. -- 18.3.2 Source Controlled Deformation. -- References. -- 19 Discrete Dislocation Dynamics Simulation of Crack-Tip Plasticity -- (A. Hartmaier and P. Gumbsch). -- 19.1 Introduction. -- 19.2 Model. -- 19.3 Crack-Tip Plasticity. -- 19.4 Scaling Relations. -- 19.5 Discussion. -- 19.6 Conclusions. -- References. -- 20 Coarse Graining of Dislocation Structure and Dynamics -- (R. LeSar and J. M. Rickman). -- 20.1 Introduction. -- 20.2 Dynamics of Discrete Dislocations. -- 20.3 Static Coarse-Grained Properties. -- 20.4 Dynamic Coarse-Grained Properties. -- 20.5 Conclusions. -- References. -- 21 Statistical Dislocation Modeling -- (R. Sedlácek). -- 21.1 Introduction. -- 21.2 One-parameter Models. -- 21.3 Multi-parameter Models. -- 21.4 Conclusions. -- References. -- 22 Taylor-Type Homogenization Methods for Texture and Anisotropy -- (P. Van Houtte, S. Li, and O. Engler). -- 22.1 Introduction. -- 22.2 Local Constitutive Laws (Mesoscopic Scale). -- 22.3 The Taylor Ambiguity. -- 22.4 Full Constraints (FC) Taylor Theory. -- 22.5 Classical Relaxed Constraints (RC) Models. -- 22.6 Multi-grain RC Models. -- 22.7 Validation of the Models. -- 22.8 Conclusions. -- References. -- 23 Self Consistent Homogenization Methods for Texture and Anisotropy -- (C. N. Tome; and R. A. Lebensohn). -- 23.1 Introduction. -- 23.2 Viscoplastic Selfconsistent Formalism. -- 23.3 Implementation of a Texture Development Calculation. -- 23.4 Applications. -- 23.5 Further Selfconsistent Models and Applications. -- References. -- 24 Phase-field Extension of Crystal Plasticity with Application to Hardening Modeling -- (B. Svendsen). -- 24.1 Introduction. -- 24.2 Basic Considerations and Results. -- 24.3 The Case of Small Deformation. -- 24.4 Simple Shear of a Crystalline Strip. -- References. -- 25 Generalized Continuum Modelling of Single and Polycrystal Plasticity -- (S. Forest). -- 25.1 Introduction. -- 25.2 Generalized Continuum Crystal Plasticity Models. -- 25.3 From Single to Polycrystals: Homogenization of Generalized Continua. -- 25.4 Simulations of Size Effects in Crystal Plasticity. -- 25.5 Conclusion. -- References. -- 26 Micro-Mechanical Finite Element Models for Crystal Plasticity -- (S. R. Kalidindi). -- 26.1 Introduction. -- 26.2 Theoretical Background. -- 26.3 Micro-Mechanical Finite Element Models. -- 26.4 Examples. -- References. -- 27 A Crystal Plasticity Framework for Deformation Twinning -- (S. R. Kalidindi). -- 27.1 Introduction. -- 27.2 Historical Perspective. -- 27.3 Incorporation of Deformation Twinning. -- 27.4 Examples. -- References. -- 28 The Texture Component Crystal Plasticity Finite Element Method -- (F. Roters). -- 28.1 Introduction. -- 28.2 The Texture Component Method. -- 28.3 The Crystal Plasticity Model. -- 28.4 Application of the TCCP-FEM to Forming Simulation. -- 28.5 Outlook. -- References. -- 29 Microstructural Modeling of Multifunctional Material Properties: The OOF Project -- (R. E. Garci;a, A. C. E. Reid, S. A. Langer, and W. C. Carter). -- 29.1 Introduction. -- 29.2 Program Overview. -- 29.3 Modeling of Piezoelectric Microstructures. -- 29.4 Modeling of Electrochemical Soli
Summary This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fu
Notes Formerly CIP. Uk
Bibliography Includes bibliographical references and index
Notes Online version of the print title
System requirements: Internet connectivity, World Wide Web browser, and Adobe Acrobat
Mode of access: World Wide Web
Subject Materials -- Computer simulation.
Manufacturing processes -- Computer simulation.
Author Raabe, Dierk.
John Wiley & Sons.
LC no. 2004276287
ISBN 3527307605 alkaline paper
ABBREV TI CONTINUUM SCALE SIMULATION OF ENGINEERING MATERIALS