Limit search to available items
Book Cover
E-book
Author Yurchuk, Ekaterina

Title Electrical Characterisation of Ferroelectric Field Effect Transistors Based on Ferroelectric HfO2 Thin Films
Published Berlin : Logos Verlag Berlin, 2015

Copies

Description 1 online resource (186 pages)
Series Research at NaMLab Ser. ; v. 4
Research at NaMLab Ser
Contents Intro; 1 Introduction; 2 Fundamentals; 2.1 Non-volatile semiconductor memories; 2.2 Emerging memory concepts; 2.3 Ferroelectric memories; 3 Characterisation methods; 3.1 Memory characterisation tests; 3.2 Ferroelectric memory specific characterisation tests; 3.3 Trapping characterisation methods; 3.4 Microstructural analyses; 4 Sample description; 4.1 Metal-insulator-metal capacitors; 4.2 Ferroelectric field effect transistors; 5 Stabilisation of the ferroelectric properties in Si:HfO2 thin films; 5.1 Impact of the silicon doping; 5.2 Impact of the post-metallisation anneal
5.3 Impact of the film thickness5.4 Summary; 6 Electrical properties of the ferroelectric Si:HfO2 thin films; 6.1 Field cycling effect; 6.2 Switching kinetics; 6.3 Fatigue behaviour; 6.4 Summary; 7 Ferroelectric field effect transistors based on Si:HfO2 films; 7.1 Effect of the silicon doping; 7.2 Program and erase operation; 7.3 Retention behaviour; 7.4 Endurance properties; 7.5 Impact of scaling on the device performance; 7.6 Summary; 8 Trapping effects in Si:HfO2-based FeFETs; 8.1 Trapping kinetics of the bulk Si:HfO2 traps; 8.2 Detrapping kinetics of the bulk Si:HfO2 traps
8.3 Impact of trapping on the FeFET performance8.4 Modified approach for erase operation; 8.5 Summary; 9 Summary and Outlook
Summary Annotation Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO2 thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO2 thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO2-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour
Bibliography Includes bibliographical references
Notes Print version record
Subject Hafnium.
Ferroelectric crystals.
Ferroelectric crystals
Hafnium
Form Electronic book
LC no. 2016440253
ISBN 9783832594787
3832594787