Limit search to available items
Book Cover
E-book
Author Guochang, Jiang

Title A Study of Ion Cluster Theory of Molten Silicates and some Inorganic Substances : Handbook
Published Zurich : Trans Tech Publishers, 2009

Copies

Description 1 online resource (282 pages)
Series Materials Science Foundations (monograph series) ; v. 52-53
Materials Science Foundations (monograph series)
Contents A Study of Ion Cluster Theory of Molten Silicates and some Inorganic Substances; Preface; Table of Contents; Table of Contents; 1. Significance of Studying Molten State in Metallurgy/Ggeometry/Ceramics; 1.1. Why it Is Important to Interconnect Micro Structure with Relevant Macroscopic Properties; 1.2. Two Aspects of the Studying Approach. Ref. 1.; 2. Development of High Temperature Raman Spectroscopy in Shanghai University; 2.1. Selection of Experiment Method in Studying Micro Structure of Molten Silicate; 2.2. Summary of Raman Spectroscopy
2.3. Characteristics of Diverse High Temperature Raman Spectroscopy (HTRS)2.4. The First Set of HTRS Developed in Shanghai University (SU-HTRS); 2.5. The Second Set of HTRS Developed in Shanghai University, SU-HTRS(T/S); Ref. 2; 3. Micro Structure of Diverse Hierarchy in Silicates and Aluminates; 3.1. Micro Structure of Silicates in Phenomenology; 3.2. Elementary Micro Structure of Silicates; 3.3. Second and Multi Order Micro Structure of Silicates; 3.4. Discrepancy of Micro Structure between Silicate Melt and Silicate Glass
3.5. Coordination Bond of Al in Ai-O Tetrahedron, and the Oxygen with Three Bonds3.6. Al-O Tetrahedra in Aluminates; Ref. 3; 4. SiOT Model Used to Calculate the Raman Spectroscopy of Molten Silicates; 4.1. Survey of the Theoretical Description of HTRS of Molten Silicate; 4.2. Gist of the Model; 4.3. Application of SiOt Model; 4.4. Characteristics and Function of SiOt Model; Ref. 4; 5. Interconnection of Micro Structure and Thermodynamic Properties -- CEMS Model; 5.1. CEMS Model; 5.2. Self-Consistent Calcuation of CEMS Model; 5.3. A Discussion on the Reliability of CEMS Model
5.4. Calculation of Thermodynamic Properties5.5. Characteristics and Function of CEMS Model; Ref. 5; 6. Ab Initio Calculation of Raman Spectra of Silicate; 6.1. A Brief Introduction of Ab Initio calculation; 6.2. Use of Gaussian 98 Software in Raman Spectrum Calculation; 6.3. Raman Spectra of Na2O-SiO2 System Crystals Calculated with G98 Software; 6.4. Prediction of Micro Structure in Glass and Melt According to the Result for Crystal; 6.5. Error and Applicable Limit of Ab Initio Calculation; Ref. 6.; 7. Raman Spectra of some Inorganic Glasses and Compounds
7.1. Influence of Composition on Raman Spectra of Silicate Glasses7.2. Raman Spectra of some Aluminosilicate Minerals; 7.3. Raman Spectra of Binary Na2O-P2O5 System; 7.4. Raman Spectra of Borate; 7.5. Summary of the Study on Phase Transformation by Means of HTRS. 7.6. Raman Spectra of TiO2 and Nano-PbTiO3; 7.7. Solid-Liquid Boundary during the Growing Process of TeO2 Crystal; Ref. 7; 8. Ion Cluster Theory in Thermodynamics -- the High Order Subregular Model of Melt; 8.1. SReM Model; 8.2. Relationships between the Parameters in Quaternary and Quinary System
Summary The first part of this monograph consists of a discussion of the microstructures of molten silicates and other inorganic substances. It is made up of seven chapters. Chapter 1 considers developments in ion-cluster theory. Chapter 2 introduces experimental approaches to the direct monitoring of a molten sample, such as hightemperature Raman spectroscopes which have successfully recorded Raman spectra from melts at temperatures of 2000K or more. Chapter 3 shows that five types of Si-O tetrahedron are appropriate microstructural units for setting up structural models. Chapter 4 confirms the SiOT
Notes 8.3. Parameter Fitting Procedures in the SReM Model
Print version record
Subject Silicates.
Ionic structure.
Inorganic compounds.
Raman spectroscopy.
Silicates
Inorganic Chemicals
Spectrum Analysis, Raman
silicates.
Inorganic compounds
Ionic structure
Raman spectroscopy
Silicates
Form Electronic book
Author Yongquan, Wu
Jinglin, You
ISBN 9783038133247
3038133248