Limit search to available items
Book Cover
E-book
Author Zhou, Changjian

Title Nanocarbon Electronics
Published Milton : Jenny Stanford Publishing, 2020

Copies

Description 1 online resource (374 p.)
Contents Cover -- Half Title -- Title -- Copyright -- Contents -- Preface -- 1. Overview of Nanocarbon Electronics -- 1.1 Introduction -- 1.2 Nanocarbon Materials Fundamentals -- 1.3 Nanocarbon-Based Electronic Devices -- 1.4 Chapter Organization and Summaries -- 2. Nanocarbon Growth Methods and Device Integration -- 2.1 Introduction -- 2.2 CNT Growth Method and Its Integration -- 2.2.1 Arc-Discharge Method -- 2.2.2 Laser Ablation Method -- 2.2.3 Chemical Vapor Deposition Method -- 2.3 Graphene Growth and Integration Process -- 2.3.1 Exfoliation Method -- 2.3.2 Chemical Vapor Deposition Method
2.3.3 Epitaxial Graphene Growth Method -- 2.4 CNT-Graphene Heterostructure Growth Methods -- 2.5 Summary -- 3. Electronic Transport in Nanocarbon Interconnects -- 3.1 Introduction -- 3.2 Side Contact versus End Contact -- 3.3 Horizontal CNT Interconnects with Side Contacts -- 3.4 Vertical CNT Interconnects with End Contacts -- 3.4.1 CNT Interconnect Vias -- 3.4.2 CNT Via Nanostructure Characterization -- 3.4.3 Electrical Characterization of Carbon Nanotube Vias -- 3.4.4 Current-Carrying Capacity Experiment -- 3.4.5 Comparison of CNT Vias with Cu and W Vias
3.5 Electronic Transport in CNT-Graphene Heterostructure -- 3.5.1 Vertical CNT-Graphene Heterostructure -- 3.5.2 Geometry Definition and Contact Optimization -- 3.5.3 Electronic Transport Properties -- 3.6 Summary and Conclusion -- 4. Carbon Nanotube Transistors -- 4.1 Introduction -- 4.2 CNT Fabrication and Separation -- 4.3 Progress of CNT Transistors -- 4.3.1 Gate Control -- 4.3.2 Schottky Barrier -- 4.3.3 Unipolar Conduction Behavior -- 4.3.4 SWCNT Channel -- 4.4 Flexible and Stretchable CNT Transistors -- 4.4.1 Fabrication Technology -- 4.4.2 Flexible CNT Thin-Film Transistors
4.4.3 Stretchable CNT Thin-Film Transistors -- 4.5 Applications of CNT Transistors -- 4.5.1 Integrated Circuits -- 4.5.2 Flexible Display Circuits -- 4.5.3 Biosensors -- 4.6 Summary -- 5. Graphene Transistors -- 5.1 Introduction -- 5.2 Structure and Electronic Properties of Graphene -- 5.3 Issues of Graphene for FETs -- 5.3.1 Bandgap Engineering -- 5.3.1.1 Graphene nanoribbons -- 5.3.1.2 Bilayer graphene -- 5.3.1.3 Strain engineering -- 5.3.2 Contact Resistance -- 5.3.3 Mobility Optimization -- 5.4 Performance of Graphene FETs -- 5.4.1 Current Switching -- 5.4.2 Voltage Gain
5.5 Graphene FETs in CMOS Circuits -- 5.6 Novel Graphene Transistor Structures -- 5.7 Radio-Frequency Graphene Electronics -- 5.8 Flexible Graphene Electronics -- 5.8.1 Preparation of Flexible Graphene Thin Film -- 5.8.2 Flexible Graphene Transistor -- 5.9 Summary -- 6. Nanocarbons for Flexible Sensing Applications -- 6.1 Introduction and Overview for Flexible Nanocarbon Electronics -- 6.2 Flexible Device Fabrication -- 6.2.1 Flexible Substrate Selection -- 6.2.2 Fabrication Techniques -- 6.2.2.1 Lithography -- 6.2.2.2 Nanocarbon ink preparation -- 6.2.2.3 Nanocarbon printing
Summary This book presents a comprehensive review of research on applications of carbon nanotubes (CNTs) and graphene to electronic devices. As nanocarbons in general, and CNTs and graphene in particular, are becoming increasingly recognized as the most promising materials for future generations of electronic devices, including transistors, sensors, and interconnects, a knowledge gap still exists between the basic science of nanocarbons and their feasibility for cost-effective product manufacturing. The book highlights some of the issues surrounding this missing link by providing a detailed review of the nanostructure and electronic properties, materials, and device fabrication and of the structure-property-application relationships
Notes Description based upon print version of record
Cary Y. Yang is professor of electrical engineering and director of TENT Laboratory at Santa Clara University, a facility located inside NASA's Ames Research Center, California, USA. Changjian Zhou is associate professor in the School of Microelectronics at the South China University of Technology, China. He earned his PhD in 2012 from Tsinghua University, China. Min Zhangis associate professor in School of Electronic and Computer Engineering and vice director of Thin Film Transistor and Advanced Display Lab at Peking University Shenzhen Graduate School, China
Subject Electronics.
Carbon nanotubes.
Graphene.
Electronics
Nanotubes, Carbon
carbon nanotubes.
TECHNOLOGY / Electronics / General
TECHNOLOGY / Optics
SCIENCE / Electromagnetism
Carbon nanotubes
Electronics
Graphene
Form Electronic book
Author Zhang, Min
Yang, Cary Y
ISBN 9781000064711
1000064719
9781000064650
1000064654
9781003043089
1003043089
9781000064681
1000064689