Limit search to available items
Book Cover
E-book
Author Wang, Fei "Fred"

Title Design of Three-Phase AC Power Electronics Converters
Edition 1st ed
Published Newark : John Wiley & Sons, Incorporated, 2023
©2024

Copies

Description 1 online resource (691 pages)
Series IEEE Press Series
IEEE Press Series
Contents Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Basics of Three-Phase AC Converters -- 1.1.1 Basic Applications -- 1.1.2 Basic Topologies -- 1.1.3 Composition of Three-Phase AC Converters -- 1.2 Basics of Three-Phase AC Converter Design -- 1.2.1 Essence of the Design and Design Tasks -- 1.2.2 Design Procedure, Strategy, and Philosophy -- 1.3 Goal and Organization of This Book -- References -- Part I Components -- Chapter 2 Power Semiconductor Devices -- 2.1 Introduction -- 2.2 Static Characteristics -- 2.2.1 Output Characteristics -- 2.2.2 On-state Characteristics -- 2.2.3 Transfer Characteristics of Active Power Switch -- 2.2.4 Leakage Current and Breakdown Voltage -- 2.2.5 Junction Capacitance -- 2.2.6 Gate Charge -- 2.3 Switching Characteristics -- 2.3.1 Model -- 2.3.2 Method -- 2.4 Thermal Characteristics -- 2.4.1 Model -- 2.4.2 Method -- 2.5 Other Attributes -- 2.5.1 SOA -- 2.5.2 Reliability Characteristics -- 2.5.3 Mechanical Characteristics -- 2.5.4 Nonstandard Characteristics -- 2.6 Scalability (Parallel/Series) -- 2.7 Relevance to Converter Design -- 2.8 Summary -- References -- Chapter 3 Capacitors -- 3.1 Introduction -- 3.2 Capacitor Types and Technologies -- 3.2.1 Ceramic Capacitors -- 3.2.2 Paper -- 3.2.3 Mica -- 3.2.4 Poly-Film -- 3.2.5 Aluminum Electrolytic Capacitors (AECs) -- 3.2.6 Tantalum Electrolytic Capacitors (TECs) -- 3.2.7 Capacitor Technologies Comparison -- 3.2.8 Emerging Capacitor Technologies -- 3.3 Capacitor Selection in a Converter Design -- 3.4 Capacitor Characteristics and Models -- 3.4.1 Capacitor Equivalent Circuit Model and Capacitance -- 3.4.2 Voltage and Current Capability Models -- 3.4.3 Loss and Thermal Models -- 3.4.4 Lifetime Model -- 3.5 Capacitor Bank (Parallel/Series)
3.5.1 Capacitor Bank Configuration and Voltage Balancing -- 3.5.2 Capacitor Bank Layout for Parasitic Inductance Reduction -- 3.6 Relevance to Converter Design -- 3.6.1 Capacitor Scaling -- 3.6.2 AC Capacitor Classification -- 3.7 Summary -- References -- Chapter 4 Magnetics -- 4.1 Introduction -- 4.2 Magnetic Core Materials and Construction -- 4.2.1 Soft Magnetic Alloy-Based Laminated, Tape Wound and Cut Cores -- 4.2.2 Powder Cores -- 4.2.3 Ferrite Cores -- 4.3 Inductor Design in a Converter -- 4.4 Inductor Characteristics and Models -- 4.4.1 Inductance and Permeability -- 4.4.2 Flux Density and Core Saturation -- 4.4.3 Fill Factor -- 4.4.4 Current Density and Core Window Area Product Ap -- 4.4.5 Core Loss -- 4.4.6 Winding Loss -- 4.4.7 Temperature Rise -- 4.4.8 Leakage Inductance -- 4.4.9 Fringing Effect of Gapped Cores -- 4.5 Relevance to Converter Design -- 4.5.1 Capacitor Winding Capacitance -- 4.6 Summary -- References -- Part II Subsystems Design -- Chapter 5 Passive Rectifiers -- 5.1 Introduction -- 5.2 Passive Rectifier Design Problem Formulation -- 5.2.1 Passive Rectifier Design Variables -- 5.2.2 Passive Rectifier Design Constraints -- 5.2.3 Passive Rectifier Design Conditions -- 5.2.4 Passive Rectifier Design Objectives and Design Problem Formulation -- 5.3 Passive Rectifier Models -- 5.3.1 AC Input Harmonic Current -- 5.3.2 Minimum and Maximum DC Voltages Under Normal Operating Conditions -- 5.3.3 Ride-Through or Holdup Time Without Input Power -- 5.3.4 DC-Link Stability -- 5.3.5 Device-Related Constraints -- Inrush -- 5.3.6 Inductor-Related Constraints and Design -- 5.3.7 Capacitor-Related Constraints and Selection -- 5.4 Passive Rectifier Design Optimization -- 5.5 Interface to Other Subsystem Designs -- 5.5.1 General Classifications -- 5.5.2 Discussion -- 5.6 Summary -- References -- Chapter 6 Load-side Inverters -- 6.1 Introduction
6.2 Load-side Inverter Design Problem Formulation -- 6.2.1 Load-side Inverter Design Variables -- 6.2.2 Load-side Inverter Design Constraints -- 6.2.3 Load-side Inverter Design Conditions -- 6.2.4 Load-side Inverter Design Objectives and Design Problem Formulation -- 6.3 Load-side Inverter Models -- 6.3.1 AC Load Harmonic Current -- 6.3.2 Inverter Power Loss -- 6.3.3 Control Performance -- 6.3.4 Device Maximum Junction Temperature -- Maximum Thermal Impedance Requirement -- 6.3.5 Device Switching Overvoltage -- 6.3.6 Decoupling Capacitor -- 6.3.7 Decoupling Inductor -- 6.4 Load-side Inverter Design Optimization -- 6.5 Load-side Inverter Interfaces to Other Subsystem Designs -- 6.5.1 General Classifications -- 6.5.2 Discussion -- 6.6 Summary -- References -- Chapter 7 Active Rectifiers and Source-side Inverters -- 7.1 Introduction -- 7.2 Active Rectifier and Source-side Inverter Design Problem Formulation -- 7.2.1 Active Rectifier and Source-side Inverter Design Variables -- 7.2.2 Active Rectifier or Source-side Inverter Design Constraints -- 7.2.3 Active Rectifier and Load-side Inverter Design Conditions -- 7.2.4 Active Rectifier and Source-side Inverter Design Objectives and Design Problem Formulation -- 7.3 Active Rectifier and Source-side Inverter Models -- 7.3.1 AC Source Harmonic Current -- 7.3.2 Control Performance -- 7.3.3 DC-Link Stability -- 7.3.4 Reliability -- 7.4 Active Rectifier and Source-side Inverter Design Optimization -- 7.5 Impact of Topology -- 7.5.1 Circuit Modeling for Different Topologies -- 7.5.2 Topology Impact on Device Models -- 7.6 Active Rectifier and Source-side Inverter Interfaces to Other Subsystem Designs -- 7.7 Summary -- References -- Chapter 8 EMI Filters -- 8.1 Introduction -- 8.2 EMI Filter Design Basics -- 8.2.1 EMI/EMC Standards -- 8.2.2 Definition of CM and DM Noise -- 8.2.3 EMI Noise Measurement
8.2.4 Basic EMI Filter Design Method -- 8.2.5 EMI Filter Topology -- 8.3 EMI Filter Design Problem Formulation -- 8.3.1 EMI Filter Design Variables -- 8.3.2 EMI Filter Design Constraints -- 8.3.3 EMI Filter Design Conditions -- 8.3.4 EMI Filter Design Objectives and Design Problem Formulation -- 8.4 EMI Filter Models -- 8.4.1 EMI Noise Source Model -- 8.4.2 EMI Propagation Path Impedance Model -- 8.4.3 EMI Filter Corner Frequency vs. Switching Frequency -- 8.5 EMI Filter Design Optimization and Some Practical Considerations -- 8.5.1 Grounding Effect -- 8.5.2 EMI Filter Coupling -- 8.5.3 Mixed-Mode Noise -- 8.5.4 EMI Noise Mode Transformation Due to Propagation Path Unbalance -- 8.6 EMI Noise and Filter Reduction Techniques -- 8.6.1 Switching Frequency -- 8.6.2 Modulation Scheme -- 8.6.3 EMI Filter Topology -- 8.6.4 Active/Hybrid Filter -- 8.6.5 Paralleled Converters Interleaving Angle Optimization -- 8.6.6 EMI Filter Integration -- 8.7 Interface to Other Subsystem Designs -- 8.7.1 Voltage Distribution -- 8.7.2 Current Distribution -- 8.7.3 Input/Output Terminals -- 8.7.4 Load-side dv/dt -- 8.8 Summary -- References -- Chapter 9 Thermal Management System -- 9.1 Introduction -- 9.2 Cooling Technology Overview -- 9.2.1 Basic Conventional Cooling Methods for Power Electronics -- 9.2.2 Advanced Cooling Techniques -- 9.2.3 Comparison of Cooling Technologies -- 9.2.4 Heatsinks and Other Components -- 9.3 Thermal Management System Design Problem Formulation -- 9.3.1 Thermal Management System Design Variables -- 9.3.2 Thermal Management System Design Constraints -- 9.3.3 Thermal Management System Design Conditions -- 9.3.4 Thermal Management System Design Objectives and Design Problem Formulation -- 9.4 Thermal Management System Models -- 9.4.1 Thermal Impedance -- 9.4.2 Heatsink Dimensions -- 9.5 Thermal Management System Design Optimization
9.5.1 Design Optimization Example -- 9.5.2 Design Verification -- 9.6 Thermal Management System Interface to Other Subsystems -- 9.6.1 General Classification -- 9.6.2 Discussion -- 9.7 Other Cooling Considerations -- 9.7.1 Force-Liquid Convection Cooling -- 9.7.2 Cooling for Passives -- 9.8 Summary -- References -- Chapter 10 Control and Auxiliaries -- 10.1 Introduction -- 10.2 Control Architecture -- 10.2.1 System Control Layer -- 10.2.2 Application Control Layer -- 10.2.3 Converter Control Layer -- 10.2.4 Switching Control Layer -- 10.2.5 Hardware Control Layer -- 10.3 Control Hardware Selection and Design -- 10.4 Isolation -- 10.4.1 Signal Isolator -- 10.4.2 Isolated Power Supply -- 10.4.3 Discussion on Isolation Strategies for Low-Power Converter Design -- 10.5 Gate Driver -- 10.5.1 Gate Driver Fundamentals -- 10.5.2 Gate Driver-Related Key Device Characteristics -- 10.5.3 Gate Driver Design -- 10.5.4 Bootstrap Gate Driver -- 10.6 Sensors and Measurements -- 10.6.1 Voltage Sensors -- 10.6.2 Current Sensors -- 10.6.3 Temperature Sensors -- 10.6.4 High-Voltage Sensors -- 10.6.5 Sensing Circuit Design Considerations for High-Frequency WBG Converters -- 10.7 Protection -- 10.7.1 Device-Level Protection -- 10.7.2 Converter-Level Protection -- 10.8 Printed Circuit Boards -- 10.9 Deadtime Setting and Compensation -- 10.9.1 Deadtime Setting -- 10.9.2 Deadtime Compensation -- 10.10 Interface to Other Subsystems -- 10.11 Summary -- References -- Chapter 11 Mechanical System -- 11.1 Introduction -- 11.2 Mechanical System Design Problem Formulation -- 11.2.1 Mechanical System Design Variables -- 11.2.2 Mechanical System Design Constraints -- 11.2.3 Mechanical System Design Conditions -- 11.2.4 Mechanical System Design Objectives and Design Problem Formulation -- 11.3 Busbar Design -- 11.3.1 Busbar Design Problem Formulation
Notes 11.3.2 Busbar Design Procedures and Considerations
Description based on publisher supplied metadata and other sources
Form Electronic book
Author Zhang, Zheyu
Chen, Ruirui
ISBN 1119794269
9781119794264
1119794250
9781119794257