Limit search to available items
Book Cover
E-book
Author Ting, Michael (Software engineer)

Title Molecular Imaging in Nano MRI / Michael Ting
Published London, U.K. : ISTE ; Hoboken, N.J. : Wiley, 2014
Table of Contents
 Introductionix
ch. 1 Nano MRI1
ch. 2 Sparse Image Reconstruction7
2.1.Introduction7
2.2.Problem formulation8
2.3.Validity of the observation model in MRFM9
2.4.Literature review11
2.4.1.Sparse denoising11
2.4.2.Variable selection12
2.4.3.Compressed sensing12
2.5.Reconstruction performance criteria13
ch. 3 Iterative Thresholding Methods15
3.1.Introduction15
3.2.Separation of deconvolution and denoising15
3.2.1.Gaussian noise statistics17
3.2.2.Poisson noise statistics19
3.3.Choice of sparse denoising operator in the case of Gaussian noise statistics20
3.3.1.Comparison to the projected gradient method23
3.4.Hyperparameter selection25
3.5.MAP estimators using the LAZE image prior26
3.5.1.MAP128
3.5.2.MAP230
3.5.3.Comparison of MAP1 versus MAP231
3.6.Simulation example33
3.7.Future directions41
ch. 4 Hyperparameter Selection Using the SURE Criterion43
4.1.Introduction43
4.2.SURE for the lasso estimator44
4.3.SURE for the hybrid estimator45
4.4.Computational considerations46
4.5.Comparison with other criteria47
4.6.Simulation example48
ch. 5 Monte Carlo Approach: Gibbs Sampling53
5.1.Introduction53
5.2.Casting the sparse image reconstruction problem in the Bayesian framework54
5.3.MAP estimate using the Gibbs sampler56
5.3.1.Conditional density of w57
5.3.2.Conditional density of a58
5.3.3.Conditional density of sigma258
5.3.4.Conditional density of σ260
5.4.Uncertainty in the blur point spread function60
5.5.Simulation example60
ch. 6 Simulation Study65
6.1.Introduction65
6.2.Reconstruction simulation study66
6.2.1.Binary-valued x67
6.2.2.{0, ±1}-valued x69
6.3.Discussion71
 Bibliography73
 Index77

Copies

Description 1 online resource (x, 77 pages)
Series Focus series
Focus nanoscience and nanotechnology series.
Contents 880-01 Cover; Title page; Contents; Introduction; Chapter 1. Nano MRI; Chapter 2. Sparse Image Reconstruction; 2.1. Introduction; 2.2. Problem formulation; 2.3. Validity of the observation model in MRFM; 2.4. Literature review; 2.4.1. Sparse denoising; 2.4.2. Variable selection; 2.4.3. Compressed sensing; 2.5. Reconstruction performance criteria; Chapter 3. Iterative Thresholding Methods; 3.1. Introduction; 3.2. Separation of deconvolution and denoising; 3.2.1. Gaussian noise statistics; 3.2.2. Poisson noise statistics
880-01/(S Machine generated contents note: ch. 1 Nano MRI -- ch. 2 Sparse Image Reconstruction -- 2.1. Introduction -- 2.2. Problem formulation -- 2.3. Validity of the observation model in MRFM -- 2.4. Literature review -- 2.4.1. Sparse denoising -- 2.4.2. Variable selection -- 2.4.3. Compressed sensing -- 2.5. Reconstruction performance criteria -- ch. 3 Iterative Thresholding Methods -- 3.1. Introduction -- 3.2. Separation of deconvolution and denoising -- 3.2.1. Gaussian noise statistics -- 3.2.2. Poisson noise statistics -- 3.3. Choice of sparse denoising operator in the case of Gaussian noise statistics -- 3.3.1. Comparison to the projected gradient method -- 3.4. Hyperparameter selection -- 3.5. MAP estimators using the LAZE image prior -- 3.5.1. MAP1 -- 3.5.2. MAP2 -- 3.5.3. Comparison of MAP1 versus MAP2 -- 3.6. Simulation example -- 3.7. Future directions -- ch. 4 Hyperparameter Selection Using the SURE Criterion -- 4.1. Introduction -- 4.2. SURE for the lasso estimator -- 4.3. SURE for the hybrid estimator -- 4.4. Computational considerations -- 4.5. Comparison with other criteria -- 4.6. Simulation example -- ch. 5 Monte Carlo Approach: Gibbs Sampling -- 5.1. Introduction -- 5.2. Casting the sparse image reconstruction problem in the Bayesian framework -- 5.3. MAP estimate using the Gibbs sampler -- 5.3.1. Conditional density of w -- 5.3.2. Conditional density of a -- 5.3.3. Conditional density of sigma2 -- 5.3.4. Conditional density of σ2 -- 5.4. Uncertainty in the blur point spread function -- 5.5. Simulation example -- ch. 6 Simulation Study -- 6.1. Introduction -- 6.2. Reconstruction simulation study -- 6.2.1. Binary-valued x -- 6.2.2. {0, ±1}-valued x -- 6.3. Discussion
3.3. Choice of sparse denoising operator in the case of Gaussian noise statistics3.3.1. Comparison to the projected gradient method; 3.4. Hyperparameter selection; 3.5. MAP estimators using the LAZE image prior; 3.5.1. MAP1; 3.5.2. MAP2; 3.5.3. Comparison of MAP1 versus MAP2; 3.6. Simulation example; 3.7. Future directions; Chapter 4. Hyperparameter Selection Using the SURE Criterion; 4.1. Introduction; 4.2. SURE for the lasso estimator; 4.3. SURE for the hybrid estimator; 4.4. Computational considerations; 4.5. Comparison with other criteria; 4.6. Simulation example
Summary The authors describe a technique that can visualize the atomic structure of molecules, it is necessary, in terms of the image processing, to consider the reconstruction of sparse images. Many works have leveraged the assumption of sparsity in order to achieve an improved performance that would not otherwise be possible. For nano MRI, the assumption of sparsity is given by default since, at the atomic scale, molecules aresparse structures. This work reviews the latest results on molecular imaging for nano MRI. Sparse image reconstruction methods can be categorized as either non-B
Bibliography Includes bibliographical references and index
Notes Online resource; title from PDF title page (Wiley, viewed April 4, 2014)
Subject Magnetic resonance imaging -- Computer programs
Nanoscience.
Nuclear magnetic resonance -- Computer programs
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Nanoscience
Form Electronic book
ISBN 9781118760932
111876093X
9781118760895
1118760891
9781118760949
1118760948